モニタリング観測からわかった電波銀河3C111の γ線活動期と電波ノットの噴出時期との関係

VLBI懇談会シンポジウム 12月27日(火) 山口大学 B4 塩谷 康允 共同研究者:藤澤健太・新沼浩太郎

AGN統一モデル

AGNの一般的描像(Urry & Padovani 1995) 思惑会いいポジウム - 2016 /12 /27

電波銀河 3C 111

□ 基本情報

- > BLRG FRⅡ型の電波銀河(赤方偏移z = 0.049:1mas = 0.947pc)
- ▶ 電波ノットの超光速現象が確認され電波フレアと相関(Kadler et al.2008)
 ▶ Fermi衛星でγ線が検出された数少ない電波銀河

AGNジェットからのγ線検出

□ Fermi衛星の打ち上げによりAGNからγ線検出
 > ほとんどがブレーザーで電波銀河は少ない

Fermi衛星で検出された3FGLのAGNの内訳(Ackermann et al., 2015 改良)

AGNからの y 線放射

□ 電波銀河のγ線放射
 > 統一モデルに従えば、ブレーザーと
 □ 同程度の結果が得られるはず

ジェットの逆コンプトン散乱モデル (Sikora et al. 1994) ポジウム - 2016 /12 /27

研究目的と研究方法

電波ノットの物理パラメータと 噴出時期と電波・γ線のLCとの関係を調べる

▶ VLBIデータを解析し電波ノットの物理パラメータを調べる

- ▶ 求めた運動から噴出時期を求める
- ➤ 電波・γ線のLCとの関係を見る

観測概要

□ VLBA 15GHzでのマルチエポックVLBI観測(MOJAVE)
 > 観測期間: 2009/12~2016/09
 > 28epoch•3ヶ月間隔

VLBAのアレイ配置図(NRAO Homepage)

コアからの角距離の経年変化

ジェットの見かけの速度と噴出時期

ロ 見かけの速度 eta_{app}
▷ $\beta_{app} = 3 \sim 5$ 程度
> β_{app} に違いがある
⇒速度が異なる or 軌道が異なる
□ 噴出時期 ▶ 電波、γ線のlight curveと比較
口 より詳細な物理パラメータの 推定
▶ 真の速度 β, ローレンツ因子 「,

ドップラー係数 δ ,放出角 θ

表: 各ノットのβ_{app}と噴出時期

Component	β_{app}	Ejection time
K1	4.02	2005/06/13
K2	4.06	2006/06/05
K3a	3.09	2006/12/20
K3b	4.05	2007/06/10
K4	4.79	2012/04/24
K5	5.39	2013/10/06
K6	5.31	2014/08/19

物理パラメータの推定

□ 物理パラメータの推定
 > 放出角・ドップラー因子どちらかを固定しなければならない

$$\beta = \frac{\beta_{app}}{\beta_{app}\cos\theta + \sin\theta} \qquad \Gamma = \frac{1}{\sqrt{1 - \beta^2}}$$
$$\delta = \frac{\sqrt{1 - \beta^2}}{1 - \beta\cos\theta} \qquad \theta = \tan^{-1}\left(\frac{2\beta_{app}}{\beta_{app} + \delta^2 - 1}\right)$$

□ 解決策
 > 放出角を既存の値(θ=18° (Jorstad et al. 2005)など)から考える
 > 上限値・下限値を求めてから考える

物理パラメータの推定

口 θ = 18° で一定と仮定

		表 :谷	ノット	の物理ノ	ペラメー	タ
コ ローレンツ因子Γ = 3~7		β_{app}	θ	β	Γ	δ
- ブレーザーの典型値(Γ = 10)を	K1	4.02	18	0.973	4.32	3.10
達成できていない	K2	4.06	18	0.974	4.38	3.08
⇒Spine-Sheath 備這	K3b	3.09	18	0.951	3.25	3.24
	K3a	4.05	18	0.973	4.36	3.09
● 回越品 ◇ 故出角け―定で良いか	K4	4.79	18	0.985	5.73	2.75
→β _{ann} にtrendがある可能性	K5	5.39	18	0.992	7.77	2.26
→ Niinuma et al.2015のジェットのふらつき	K6	5.31	18	0.991	7.40	2.34

ジェットの噴出時期とLCの関係

 $\Box \gamma 線$

γ 線活動期: 電波ノットが放出する??

コ Tanaka et al.2015の3C120のように関係があるかも

先行研究

□ Tanaka et al.2015

> 3C 120でγ線フレアの検出後、
 電波(43GHz)コアのフラックスの上昇、
 電波ノットの放出が見られた
 > シンクロトロン自己コンプトン過程に

まとめ

□ 3C 111は γ 線が検出された数少ない電波銀河の一つ

U VLBAの15GHzのアーカイブデータを用いて解析を行った

- □ 電波ノットは超光速現象を示し、噴出時期はγ線活動期 と関係しているような結果を得た
- □ 新たなγ線の挙動が見られるので継続して研究を行う
- ロ ア線放射領域(< ~1pc)を見るため、高感度・高解像度での観測を行う</p>

2016VLBI懇談会シンポジウム 2016/12/27

AGNジェット

- 口 中心天体から双方向に噴出する細く絞られたプラズマ流
 - :相論的速度のジェットが噴出(見かけは超光速)
 - :広波長域(電波~γ線)の放射

▪放射機構

■観測的特徴

:シンクロトロン放射+逆コンプトン散乱

研究天体の選出

□ 研究天体の選出

γ線が検出された電波銀河は13天体
 ⇒◎比較的距離が近い
 ◎VLBIのアーカイブデータが豊富

Object	1FGL Name	R.A.	Decl.	Redshift	Clas	<i>i</i> 5	log (CD)
		(J2000)	(J2000)		Radio	Optical	at 5 (GHz)
3C 78/NGC 1218	1FGLJ0308.3+0403	03 08 26.2	+04 06 39	0.029	FRI	G	-0.45
3C 84/NGC 1275	1FGLJ0319.7+4130	03 19 48.1	+41 30 42	0.018	FRI	G	-0.19
3C 111	1FGLJ0419.0+3811	04 18 21.3	+38 01 36	0.049	FRII	BLRG	-0.3
3C 120		04 33 11.1	+05 21 16	0.033	FRI	BLRG	-0.15
PKS 0625-354	1FGLJ0627.3-3530	06 27 06.7	-35 29 15	0.055	FRI ^b	G	-0.42
3C 207	1FGLJ0840.8+1310	08 40 47.6	+13 12 24	0.681	FRII	SSRQ	-0.35
PKS 0943-76	1FGLJ0940.2-7605	09 43 23.9	- 76 20 11	0.27	FRII	G	<-0.56
M87/3C 274	1FGLJ1230.8+1223	12 30 49.4	+12 23 28	0.004	FRI	G	-1.32
Cen A	1FGLJ1325.6-4300	13 25 27.6	- 43 01 09	0.0009 ^c	FRI	G	-0.95
NGC 6251	1FGLJ1635.4+8228	16 32 32.0	+82 32 16	0.024	FRI	G	-0.47
3C 380	1FGLJ1829.8+4845	18 29 31.8	+48 44 46	0.692	FRII/CSS	SSRQ	-0.02

表:ガンマ線が検出された電波銀河の一覧(Abdo et al. 2010)

電波銀河 3C 111

□ 基本情報

> BLRG•FRⅡ型の電波銀河(赤方偏移z = 0.049:1mas = 0.947pc) > Fermi衛星でγ線が検出された数少ない電波銀河

3C 111のVLAによるイメージ(Linfield & Perley 1984)

先行研究

□ Kadler et al.2008

▶ 1995~2005年までの3C 111のジェットの運動をVLBAデータを用いて研究
 ▶ 1996年ごろに起きたフレアは新しいジェット成分の噴出が原因

先行研究

□ Chatterjee et al.2011

- > 3C 111の電波・可視光・X線のフレアはほぼ同期している(右図)
- > VLBI(43GHz)のデータからX線のフレア発生時期と電波ノットの噴出時期の 同期が判明(左図)

観測概要

電波銀河3C 111のVLBA 15GHzでのマルチエポックVLBI観測

表:今回解析した観測の概要

epoch	観測日
1	2009/12/10
2	2010/3/10
3	2010/7/12
4	2010/9/29
5	2010/12/24
6	2011/2/27
7	2011/5/21
8	2011/8/26
9	2011/12/12

epoch	観測日
10	2012/3/4
11	2012/5/24
12	2012/9/2
13	2012/11/28
14	2013/2/28
15	2013/6/2
16	2013/8/20
17	2013/12/15
18	2014/2/27

epoch	観測日
19	2014/5/21
20	2014/9/1
21	2014/12/12
22	2015/5/18
23	2015/7/20
24	2015/10/2
25	2016/1/16
26	2016/3/5
27	2016/6/16
28	2016/9/17

Spine-Sheath構造 Ghisellini +05

ブレーザ

- "spine sheath" 構造
- ▶ Spine(背骨)とSheath(鞘)の二重構造
- ▶ それぞれが違う速度で運動(「_x>「」)
- "Compton-rocket effect"
- > それぞれが強められた放射を見る

ブレーザー ⇒"Spine" 電波銀河 ⇒"Sheath"

- ■"見かけ上"観測例あり
- 例) M87, 3C353, Mrk 501, etc…

