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1 Technologies Which Made VLBI Possible
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Figure 1: Schematic view of three major technologies and digital data pro-
cessing which realized VLBI.

There were three major technologies which enabled realization of radio
interferometers with very long baselines, exceeding thousands of kilometers.
They were:
1. high–stability frequency standard,
2. high–accuracy time synchronization, and
3. high–speed high–density recording, or super–wideband data transmission
in nowadays.

In addition, all signal processings essential to VLBI, such as time marking,
recording, delay tracking, fringe stopping, and correlation processing are done
digitally in modern VLBI systems. In this sense, rapid progress in digital
technology in the last decades has formed a fundament of VLBI, as illustrated
in Figure 1.
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Therefore, we will first examine theoretical bases of digital signal pro-
cessing, to an extent which is necessary to understand principles and roles
of digital circuitries used in VLBI. Then, we will see basic elements of the
major technologies mentioned above.

1.1 Basics of Digital Data Processing

1.1.1 Analog Processing Versus Digital Processing

For VLBI, digital processing is much more suited than analog prcessing, as
evident from following comparison.

Analog delay circuit Digital delay circuit

A coaxial cable can be used as a
delay cable (Figure 2), if delay is
smaller than ∼ 1 µsec (∼ 300 m).
For larger delay, other means such
as sonic wave must be used.
Almost impossible to use for an in-
tercontinental baseline. Unstable
delay value against environmental
change. Larger error with larger de-
lay. Change of frequency character-
istis with mechanical connection and
disconnection of cables.

A ring buffer composed of a large
RAM and shift registers can be used
for digital delay tracking (Figure 2).
Quite stable and highly repeatable
in variable environmental conditions.
Does not need any special tuning.
Accuracy of operation is determined
almost solely by accuracy of clock
time pulses. Easy to cover large in-
tercontinental delays.
Delay is tracked only discretely with
some loss of signal power.

Analog correlation processing Digital correlation processing

Multiplication and averaging with
analog devices. Operational range is
limited by device characteristics. Af-
fected by the environment.

Multiplication and averaging with
logic devices and counters. Sta-
ble operation and high repeatability.
Wide dynamic range.

Analog spectrometer Digital spectrometer

Narrow–band analog BPF’s with
square–law detectors (“filterbank
spectrometer”). Difficult to adjust
gains and frequency characteristics
of BPF’s (frequency channels). Af-
fected by the environment. Fre-
quency resolution is fixed by pass-
bands of BPF’s.

Composed of logic devices, shift
registers, and counters. Correla-
tion ⇒ Fourier transformation (XF–
type) and Fourier transformation ⇒
correlation (FX–type). Stable oper-
ation. Identical characteristics of fre-
quency channels. Frequency resolu-
tion could be variable.
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Figure 2: Examples of analog delay circuit using delay cables (left) and digital
delay circuit using a ring buffer (right).

1.1.2 Sampling and Clipping

Two important achievements in the theory of digital data processing were
vital for VLBI. They are the sampling theorem by Shannon (1949), and the
clipping theorem by van Vleck and Middelton (1966, original work was done
by van Vleck during World War II).

VLBI data are sampled, and clipped (or digitized) with 1–bit or 2–bit
quantization (Figure 3).

In the followings, we will see how the information of the analog data is
essentially restored from the sampled and clipped data. We will also consider
some loss of information accompanied with the digital data processing.

1.1.3 Discrete–Time Random Process

Discrete sequence of variables x[1], x[2], x[3], · · ·, x[i], · · · is called the “ran-
dom sequence”, or the “discrete–time random process”, if x[i] at any i is a
random variable, i.e., may vary from trial to trial (Figure 4). This is a “dis-
crete version” of the random process continuously varying in time (hence-
forth, “continuous–time random process”), which we saw in Chapter 3.

We introduce following statistical concepts for the discrete–time random
process.

• Expectation η[i] of a discrete–time random process x[i] (i = 1, 2, 3, · · ·,
n, · · ·) is defined by an equation:

η[i] = 〈x[i]〉, (1)

where 〈 〉 stands for an ensemble average defined by a joint probability
distribution of random variables x[i] (i = 1, 2, 3, · · ·, n, · · ·).
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Figure 3: Analog–to–digital (A/D) conversion through sampling, clipping,
and bit representation. This figure shows a case of 1–bit quantization.
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Figure 4: A discrete–time random process is a sequence x[1], x[2], x[3], · · ·,
x[i], · · ·, whose value at any i is a random variable.

• Autocorrelation R[m, n] of the discrete–time random process x[i] is
defined by an equation:

R[m, n] = 〈x[m] x∗[n]〉, (2)

where symbol {∗} stands for complex conjugate.

A discrete–time random process x[i] is called the “white noise” if its
autocorrelation satisfies

R[m, n] = 〈| x[m] |2〉 δmn, (3)

where δmn is Kronecker’s delta symbol:

δmn =











1 (m = n)

0 (m 6= n)
. (4)

• Cross–correlation of two discrete–time random processes:

x[1], x[2], x[3], · · · , x[n], · · ·
y[1], y[2], y[3], · · · , y[n], · · ·

is defined by
Rxy[m, n] = 〈x[m] y∗[n]〉. (5)
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1.1.4 Stationary Discrete–Time Random Process

The concept of stationary random process, which we introduced in Chapter
3 for continuous–time random process, can be transfered to the discrete–time
random process in the following way (see, for example, Papoulis, 1984).

• Stationary process.
A discrete–time random process x[i] is called “stationary” if the expec-
tation

η[i] = 〈x[i]〉 = η, (6)

is a constant independent of i, and if the autocorrelation

R[n + m, m] = 〈x[n + m] x∗[n]〉 = R[m], (7)

depends on difference m of arguments only.

In particular, the stationary random discrete–time process is called the
“white noise”, if we have

R[m] = R[0] δm0. (8)

• Jointly stationary processes.
Two discrete–time random processes x[i] and y[j] are called “jointly
stationary” if they are both stationary, and if their cross–correlation

Rxy[n + m, n] = 〈x[n + m] y∗[n]〉 = Rxy[m], (9)

depends on difference m of arguments only.

Similarly to the continuous–time process case, we introduce

• correlation coefficient of a zero–mean stationary discrete–time process
x[i]:

r[m] =
R[m]

R[0]
, (10)

and

• cross–correlation coefficient of zero–mean jointly stationary discrete–
time processes x[i] and y[j]:

rxy[m] =
Rxy[m]

√

Rxx[0] Ryy[0]
, (11)

where, autocovariance is just equal to autocorrelation and cross–covariance
is equal to cross–correlation, since we assumed zero–mean processes (i.e.
expectations are equal to zero).
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1.1.5 Sampling

Let us call the “sampling” an action which makes a discrete–time process
by periodically picking up values of a certain continuous–time process with a
certain interval of time (“sampling interval”). The discrete–time process thus
created is called the “time–sample” of the original continuous–time process.

If a discrete–time random process x[n] is a time–sample of a continuous–
time random process x(t) with a sampling interval T , i.e. if

x[n] = x(nT ), (12)

then statistical properties of x[n] are determined by statistical properties
(i.e., by probability distribution) of x(t).

• Expectation and autocorrelation of a random time–sample.
If we denote expectation and autocorrelation of a continuous–time ran-
dom process x(t) as η(t) and R(t1, t2), respectively, then expectation
and autocorrelation of a random time–sample x[i] = x(iT ) are given
by

η[n] = η(nT ), (13)

and
R[m, n] = R(mT, nT ), (14)

respectively.

Proof :

1. η[n] = 〈x[n]〉 = 〈x(nT )〉 = η(nT ).

2. R[m, n] = 〈x[m] x∗[n]〉 = 〈x(mT ) x∗(nT )〉 = R(mT, nT ).

• Cross–correlation of random time–samples.
If we denote cross–correlation of continuous–time random processes
x(t) and y(t) as Rxy(t1, t2), then cross–correlation of random time–
samples x[i] = x(iT ) and y[i] = y(iT ) are given by

Rxy[m, n] = Rxy(mT, nT ). (15)

Proof :

Rxy[m, n] = 〈x[m] y∗[n]〉 = 〈x(mT ) y∗(nT )〉 = Rxy(mT, nT ).
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• Stationary random time–sample.
If a continuous–time random process x(t) is a stationary random pro-
cess with constant expectation 〈x(t)〉 = η and autocorrelation
〈x(t + τ) x∗(t)〉 = R(τ), then a time–sample x[n] = x(nT ) is a station-
ary discrete–time random process with expectation:

η[n] = η, (16)

and autocorrelation:

R[n + m, n] = R[m] = R(mT ). (17)

Proof :

1. Expectation η[n] of the time–sample x[n]

η[n] = 〈x[n]〉 = 〈x(nT )〉 = η,

is a constant independent of argument n.

2. Autocorrelation R[n + m, n] of the time–sample x[n]

R[n + m, n] = 〈x[n + m] x∗[n]〉 = 〈x(mT + nT ) x∗(nT )〉
= R(mT ) = R[m],

depends on difference m of arguments only.

• Jointly–stationary random time–samples.
If x(t) and y(t) are jointly stationary continuous–time random pro-
cesses with cross–correlation 〈x(t+τ) y∗(t)〉 = Rxy(τ), then their time–
samples x[n] = x(nT ) and y[n] = y(nT ) are jointly stationary discrete–
time random processes with cross–correlation:

Rxy[n + m, n] = Rxy[m] = Rxy(mT ). (18)

Proof :

1. Time samples x[n] and y[n] are both stationary discrete–time ran-
dom processes, as we saw above.

2. Their cross–correlation

Rxy[n + m, n] = 〈x[n + m] y∗[n]〉 = 〈x(mT + nT ) y∗(nT )〉
= Rxy(mT ) = Rxy[m],

depends on difference m of arguments only.
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1.1.6 Comb Function

Infinite number of delta functions arranged with equal intervals along a hor-
izontal axis, shown in Figure 5, is called the “comb function”. Thus a comb
function

⊔

(t; T ) with period T is given in terms of delta functions δ(t) by
an equation:

⊔

(t; T ) =
∞
∑

k=−∞
δ(t − kT ), (19)

where k is an integer.

0 T 2T 3T 4T 5T 6T 7T 8T 9T-T-2T
t. . .

. . .

. . .

. . .

Figure 5: A comb function.

An alternative expression of the comb function is known in a Fourier
series form as shown below.

1. Let us expand the comb function to a Fourier series within a range

−T

2
< t ≤ T

2
of interval T :

∞
∑

k=−∞
δ(t − kT ) =

∞
∑

n=−∞
an ei 2πn

T
t, for − T

2
< t ≤ T

2
, (20)

where n is an integer.

Folllowing the standard procedure of the Fourier series expansion, we
calculate n–th Fourier coefficient an by multiplying e−i 2πm

T
t, where m

is an arbitrary integer, to both sides of equation (20), and integrating

them through
T

2
< t ≤ T

2
.

2. Then, we have

• LHS =
∞
∑

k=−∞

T
2
∫

−T
2

δ(t − kT ) e−i 2πm
T

tdt =

T
2
∫

−T
2

δ(t)e−i 2πm
T

tdt = 1,

since t can be equal to kT (t = kT ) only when k = 0 within the

range
T

2
< t ≤ T

2
,
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• RHS =
∞
∑

n=−∞
an

T
2
∫

−T
2

ei
2π(n−m)

T
t dt = am T,

since
T
2
∫

−T
2

ei
2π(n−m)

T
t dt =











0 if m 6= n

T if m = n
.

3. Equating both sides, we have an =
1

T
, for any n, and hence

∞
∑

k=−∞
δ(t − kT ) =

1

T

∞
∑

n=−∞
ei 2πn

T
t, for − T

2
< t ≤ T

2
. (21)

4. Although we derived this equality in a limited range −T

2
< t ≤ T

2
, it

actually holds for wider range of t. In fact, functions in the both sides
of equation (21) do not change if we substitute t with t + mT with an
arbitrary integer m. This means that they are both periodic functions
with period T . Therefore, equation (21) holds for the whole range of t,
i.e. −∞ < t ≤ ∞. Thus, we have a general relation

∞
∑

k=−∞
δ(t − kT ) =

1

T

∞
∑

n=−∞
ei 2πn

T
t, (22)

which holds for any t, and, therefore,

⊔

(t; T ) =
1

T

∞
∑

n=−∞
ei 2πn

T
t, (23)

is the alternative expression of the comb function.

1.1.7 Fourier Transform of a Comb Function Is a Comb Function

Fourier transform ˜⊔(ω; T ) of a comb function
⊔

(t; T ) of argument t with

period T is a comb function of argument ω with period
2π

T
(Figure 6).

Proof :
According to the general formula of Fourier transformation, we have

˜⊔(ω; T ) =

∞
∫

−∞

⊔

(t; T )e−iωt dt =

∞
∫

−∞

(

1

T

∞
∑

n=−∞
ei 2πn

T
t

)

e−iωt dt
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Comb function
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Comb function
  with period ω0 . . .

. . .
0 t

0 ω

Fourier transformation

T

ω0 = 2π
 Τ

. . .

. . .

Figure 6: Fourier transform of a comb function of t with period T is a comb

function of ω with period ω0 =
2π

T
.

=
1

T

∞
∑

n=−∞

∞
∫

−∞
e−i(ω− 2πn

T ) t dt =
2π

T

∞
∑

n=−∞
δ
(

ω − 2πn

T

)

= ω0

∞
∑

n=−∞
δ(ω − n ω0), (24)

where we introduced a notation:

ω0 =
2π

T
,

and used the general formula of the delta function:

∞
∫

−∞
e−iωt dt = 2πδ(ω).

The RHS of equation (24) is nothing but a comb function of ω with a period

ω0 =
2π

T
:

ω0

∞
∑

n=−∞
δ(ω − n ω0) = ω0

⊔

(ω; ω0). (25)

Thus,
⊔

(t; T ) ⇔ ω0
⊔

(ω; ω0),

where a symbol ⇔ implies a Fourier transform pair.

1.1.8 Spectra of Discrete–Time Processes

We introduce following definitions.
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• Power spectrum.

A power spectrum SD(ω) of a stationary random discrete–time process
x[n] with autocorrelation R[m] is given by a discrete Fourier transform
with an arbitrary parameter T (Papoulis, 1984):

SD(ω) =
∞
∑

m=−∞
R[m] e−imωT . (26)

• Cross–power spectrum.

A cross–power spectrum SDxy(ω) of jointly stationary discrete–time
processes x[n] and y[n] with cross–correlation Rxy[m] is given by a
discrete Fourier transform with an arbitrary parameter T :

SDxy(ω) =
∞
∑

m=−∞
Rxy[m] e−imωT . (27)

These spectra, as defined by discrete Fourier transforms with an arbitrary
parameter T in equations (26) and (27), are periodic functions of ω with

a period
2π

T . They have the same forms as Fourier series, with Fourier

coefficients R[m] and Rxy[m], respectively. The spectra SD(ω) and SDxy(ω)
are, in general, dependent on the arbitrary parameter T . Later, for particular
cases of sampled discrete–time processes (time–samples), we will choose T
to be equal to their sampling intervals. Then, we will be able to establish
a relationship between a spectrum of a time–sample and a spectrum of its
original continuous–time process.

• Inverse relations.

Autocorrelation R[m] and cross–correlation RDxy[m] of jointly station-
ary random discrete–time processes in equations (26) and (27) are given
through the power spectrum SD(ω) and cross–power spectrum SDxy(ω)
by inverse relations:

R[m] =
T
2π

π
T
∫

− π
T

SD(ω) eimωT dω, (28)

Rxy[m] =
T
2π

π
T
∫

− π
T

SDxy(ω) eimωT dω, (29)

which are nothing but the formulae for Fourier coefficients in the series
expansion.
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Proof :

We prove the inverse relation for the power spectrum SD(ω) given in
equation (28) only, since a proof for the cross–power spectrum SDxy(ω)
(equation (29)) is given just in a similar way.

1. If SD(ω) =
∞
∑

n=−∞
R[n] e−inωT , then R[m] =

T
2π

π
T
∫

− π
T

SD(ω) eimωT dω.

In fact,

T
2π

π
T
∫

− π
T

SD(ω) eimωT dω =
T
2π

∞
∑

n=−∞
R[n]

π
T
∫

− π
T

ei(m−n)ωT dω = R[m],

since
π
T
∫

− π
T

ei(m−n)ωT dω =











2π
T if n = m,

0 otherwise.

2. If R[m] =
T
2π

π
T
∫

− π
T

SD(ω) eimωT dω, then SD(ω) =
∞
∑

n=−∞
R[n] e−inωT .

We first prove this statement for a limited range of ω confined

within an interval − π

T < ω ≤ π

T . Inserting first equation to the

RHS of second equation, we have

∞
∑

n=−∞
R[n] e−inωT =

T
2π

π
T
∫

− π
T

SD(ω′)
∞
∑

n=−∞
ein(ω′−ω)T dω′.

Note here that
∞
∑

n=−∞
ein(ω′−ω)T is a comb function given in equation

(23), since, introducing a notation ω0 =
2π

T , we have

∞
∑

n=−∞
ein(ω′−ω)T =

∞
∑

n=−∞
e

i 2πn
ω0

(ω′−ω)
= ω0

⊔

(ω′ − ω ; ω0)

= ω0

∞
∑

k=−∞
δ(ω′ − ω − k ω0)

=
2π

T
∞
∑

k=−∞
δ
(

ω′ − ω − k
2π

T
)

. (30)
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Therefore, we obtain

∞
∑

n=−∞
R[n] e−inωT =

∞
∑

k=−∞

π
T
∫

− π
T

SD(ω′)δ
(

ω′ − ω − k
2π

T
)

dω′

= SD(ω),

since the delta function in the integrand takes non–zero value when

ω′ = ω + k
2π

T ,

and this condition holds only when k = 0, provided that ω is

confined within the interval − π

T < ω ≤ π

T .

Now, if we extend the function SD(ω) to a periodic function with a

period of
2π

T , beyond the initially imposed interval − π

T < ω ≤ π

T ,

we have ∞
∑

n=−∞
R[n] e−inωT = SD(ω),

for any range of ω.

1.1.9 Spectra of Sampled Data

Let us consider discrete–time processes x[n] and y[n], which are time–samples
obtained by sampling jointly stationary continuous–time random processes
x(t) and y(t) with a sampling interval T :

x[n] = x(nT ), and y[n] = y(nT ).

Let autocorrelation of x[n], and cross–correlation of x[n] and y[n], be R[m],
and Rxy[m], respectively. They satisfy

R[m] = R(mT ), and Rxy[m] = Rxy(mT ),

in view of equations (17) and (18). If we choose the arbitrary parameter T
in the power spectrum SD(ω) and the cross–power spectrum SDxy(ω) of the
discrete–time processes x[n] and y[n], as defined in equations (26) and (27),
to be equal to the sampling interval T , i.e.,

T = T, (31)
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then SD(ω) and SDxy(ω) are related to power spectrum S(ω) and cross–power
spectrum Sxy(ω) of the original continuous–time processes x(t) and y(t) by
equations:

SD(ω) =
1

T

∞
∑

k=−∞
S(ω + k ω0), (32)

SDxy(ω) =
1

T

∞
∑

k=−∞
Sxy(ω + k ω0), (33)

where ω0 =
2π

T
.

Proof :

We prove equation (32) for the power spectrum SD(ω) only, since
a proof of equation (33) for the cross–power spectrum SDxy(ω) is
given just in a similar way.

According to equations (17), (26), and (31), the power spectrum
of the time–sample x[n] = x(nT ) is given by

SD(ω) =
∞
∑

n=−∞
R[n] e−inωT =

∞
∑

n=−∞
R(nT ) e−inωT ,

where T is the sampling interval. Describing the autocorrelation
R(τ) of the continuous–time stationary random process x(t) in
terms of the power spectrum S(ω) through inverse Fourier trans-
formation:

R(τ) =
1

2π

∞
∫

−∞
S(ω′) eiω′τ dω′,

we have

SD(ω) =
1

2π

∞
∑

n=−∞

∞
∫

−∞
S(ω′) ein(ω′−ω)T dω′

=
1

2π

∞
∫

−∞
S(ω′)

∞
∑

n=−∞
ein(ω′−ω)T dω′.

According to equation (30),
∞
∑

n=−∞
ein(ω′−ω)T is a comb function:

∞
∑

n=−∞
ein(ω′−ω)T =

2π

T

∞
∑

k=−∞
δ
(

ω′ − ω − k
2π

T

)

.
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Therefore,

SD(ω) =
1

T

∞
∑

k=−∞

∞
∫

−∞
S(ω′) δ(ω′ − ω − k

2π

T
) dω′

=
1

T

∞
∑

k=−∞
S
(

ω + k
2π

T

)

=
1

T

∞
∑

k=−∞
S(ω + k ω0),

where ω0 =
2π

T
.

1.1.10 Inverse Relations for Spectra of Sampled Data

The inverse relation for the power spectrum SD(ω) of a discrete–time sta-
tionary random process x[n]:

R[m] =
T

2π

π
T
∫

− π
T

SD(ω) eimωT dω,

as given in equation (28), must yield an autocorrelation which satisfies R[m] =
R(mT ), if the process x[n] is a time–sample x[n] = x(nT ) of a continuous–
time stationary random process x(t).

Proof :

Substituting equation (32) to the inverse relation, we obtain

R[m] =
1

2π

∞
∑

k=−∞

π
T
∫

− π
T

S(ω + k
2π

T
) eimωT dω

=
1

2π

∞
∑

k=−∞

π
T

+k 2π
T

∫

− π
T

+k 2π
T

S(ω′) eim(ω′−k 2π
T

)T dω′

=
1

2π

∞
∑

k=−∞

π
T

+k 2π
T

∫

− π
T

+k 2π
T

S(ω′) ei(mω′T−2πkm) dω′

=
1

2π

∞
∑

k=−∞

π
T

+k 2π
T

∫

− π
T

+k 2π
T

S(ω′) eimω′T dω′

=
1

2π

∞
∫

−∞
S(ω′) eimω′T dω′ = R(mT ).
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Similarly, we confirm that the inverse relation:

Rxy[m] =
T

2π

π
T
∫

− π
T

SDxy(ω) eimωT dω,

in equation (29), gives a cross–correlation of time–samples x[n] and y[n]:
Rxy[m] = Rxy(mT ).

1.1.11 Sampling Theorem

Shannon (1949) gave a beautiful proof of the sampling theorem, which he
formulated as follows:
“If a function f(t) contains no frequencies higher than B cps, it is completely
determined by giving its ordinates at a series of points spaced 1/2B seconds
apart.”
A mathematical proof showing that “this is not only approximately, but
exactly, true” was given as follows.

“Let F (ω) be the spectrum of f(t). Then

f(t) =
1

2π

∞
∫

−∞
F (ω) eiωt dω

=
1

2π

2πB
∫

−2πB

F (ω) eiωt dω,

since F (ω) is assumed zero outside the band B. If we let

t =
n

2B
,

where n is any positive or negative integer, we obtain

f
(

n

2B

)

=
1

2π

2πB
∫

−2πB

F (ω) eiω n
2B dω.

On the left are the values of f(t) at the sampling points. The
integral on the right will be recognized as essentially the n–th co-
efficient in a Fourier–series expansion of the function F (ω), tak-
ing the interval −B to +B as a fundamental period. This means
that the values of the samples f(n/2B) determine the Fourier
coefficients in the series expansion of F (ω). Thus they determine
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F (ω), since F (ω) is zero for frequencies greater than B, and for
lower frequencies F (ω) is determined if its Fourier coefficients are
determined. But F (ω) determines the original function f(t) com-
pletely, since a function is determined if its spectrum is known.
Therefore the original samples determine the function f(t) com-
pletely.”

Shannon (1949) mentioned that Nyquist had pointed out the fundamental
importance of the time interval 1/2B seconds in connection with telegraphy,
and proposed to call this the “Nyquist interval” corresponding to the band
B.

Nowadays, we formulate the sampling theorem in a slightly wider form
(Figure 7).

t

t

Spectrum of analog continuous-time data

Analog continuous-time signal

Sampled signal

 1/(2B)
0

0

0 nB (n+1)B
ν

-(n+1)B -nB

 1/(2B)

Figure 7: Sampling theorem.

Sampling Theorem:
All the information in an analog continuous–time signal with a passband
spectrum limited within a frequency range nB ≤ ν < (n + 1)B, where B is
a bandwidth and n ≥ 0 is an integer, can be preserved, provided the signal is
sampled with the Nyquist interval 1/(2B).

Here we assume a real process with even or Hermitian symmetric spec-
trum with respect to frequency. Thus, “spectrum” here implies positive fre-
quency part of the spectrum. Sampling frequecncy 2B, with Nyquist interval
1/(2B), is called the “Nyquist rate”.
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The proof of the above theorem is given by equations (32) and (33):

SD(ω) =
1

T

∞
∑

k=−∞
S
(

ω + k
2π

T

)

,

SDxy(ω) =
1

T

∞
∑

k=−∞
Sxy

(

ω + k
2π

T

)

,

as illustrated in Figure 8.
In fact, equations (32) and (33), and Figure 8, show

• if positive frequency part of the analog continuous–time spectrum S(ω)
is confined within a passband nB ≤ ν < (n + 1)B, where n ≥ 0 is an
integer, B is bandwidth, and ν is frequency, and

• if sampling interval T is equal to the Nyquist interval: T = 1/(2B),

then the analog continuous–time spectrum S(ω) is completely preserved in
the spectrum SD(ω) of the sampled data (First and second panels from
the top of Figure 8). Therefore, all the information of the original ana-
log continuous–time signal is preserved in the sampled data. This proves the
sampling theorem.

Note, however, that the spectrum SD(ω) of the sampled data in a range
0 ≤ ν < B is inverted in frequency compared with the original analog
continuous–time spectrum S(ω), if the integer n is odd (second panel from
the top of Figure 8).

On the other hand,

• if the sampling interval T is larger than the Nyquist interval, i.e., T >
1/(2B), as shown in the third panel from the top of Figure 8, or, even
though T = 1/(2B), if the analog continuous–time spectrum is confined
within aB ≤ ν < (a + 1)B, where a is not an integer, as shown in the
bottom panel of Figure 8,

then foots of spectral components with different n’s in equations (32) and
(33) are overlapped with each other (this is called the “aliasing”). There-
fore, information of the analog continuous–time spectrum S(ω) is no longer
preserved in the spectrum SD(ω) of the sampled data.

1.1.12 Optimum Sampling Interval

In order to see that the Nyquist interval is the optimum interval for sampling,
let us consider an analog continuous–time spectrum which is confined within
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Spectrum of continuous-time data Spectrum of sampled data
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-3/2T
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-3B -2B -B B 2B 3B

B-B
1/T-1/T

. . .. . .
ν

SD (ω)

0-1/T 1/T1/2T-1/2T

S (ω)

0-1/T 1/T1/2T-1/2T
ν

-3/2T 3/2T 3/2T-3/2T
-3B -2B -B B 2B 3B -3B -2B -B B 2B 3B

. . .. . .
ν

SD (ω)S (ω)

0-1/T 1/T1/2T-1/2T
ν

-3/2T 3/2T
-3B -2B -B B 2B 3B

0-1/T 1/T1/2T-1/2T 3/2T-3/2T
-3B -2B -B B 2B 3B

B

Figure 8: Four cases of relation between spectrum of analog continuous–time
data and spectrum of sampled data given by equations (32) and (33). Top:
analog continuous–time spectrum is confined within a passband 2mB ≤| ν |<
(2m + 1)B and sampling interval T is equal to Nyquist interval T = 1/(2B).
Second from the top: analog continuous–time spectrum is confined within
a passband (2m + 1)B ≤| ν |< 2(m + 1)B and T = 1/(2B). Third from
the top: T > 1/(2B). Bottom: analog continuous–time spectrun is confined
within a passband with boundaries of non–integer multiples of B, i.e., aB ≤|
ν |< (a+1)B, and T = 1/(2B). Here we adopted notations, ν: frequency, B:
bandwidth of the analog continuous–time spectrum, m ≥ 0: an integer, and
a: a non–integer number. We assume a real process, and, therefore, an even
or Hermitian symmetric spectrum with respect to frequency. All information
of the original analog continuous–time data is completely preserved in the
sampled data in the first two cases, but a part of the information is lost after
sampling in the last two cases.

23



0 B
ν

Figure 9: A band–limited baseband spectrum confined within a frequency
range 0 ≤ ν < B. Here, positive frequency part only is shown.

a baseband 0 ≤ ν < B. Here, the “baseband”, or otherwise called the
“video–band”, implies a frequency band containing 0 Hz (or “DC”, which
means “direct current”) as the lowest frequency, such as shown in Figure 9.
This is a particular case of the passband spectrum within nB ≤ ν < (n+1)B
when n = 0. Also, we assume that the bandwidth B here corresponds to an
actual extent of the spectrum, that means the spectrum is non–zero in the
inside of the interval 0 ≤ ν < B, but zero in the outside.

Then, we can conceive three cases which are shown in Figure 10.

1/2T-1/2T 0 B-B

0 B=1/2T-B=-1/2T

0 B-B
1/2T-1/2T

ν

ν

ν

ν

ν

ν

 1
2BT=

 1
2BT<

 1
2BT>

Oversampling

Nyquist sampling

Undersampling

0 1/2T 1/T-1/2T-1/T

0 1/2T 1/T 3/2T 2/T-1/2T-1/T-3/2T-2/T

0 1/T 2/T 3/T-3/T -2/T -1/T
B-B

Spectrum of continuous-time data Spectrum of sampled data

Figure 10: Spectra of sampled data in oversampling T < 1/(2B) (top),
Nyquist sampling T = 1/(2B) (middle), and undersampling T > 1/(2B)
(bottom).

1. Oversampling
If we sample an analog continuous–time signal with sampling interval
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smaller than the Nyquist interval T < 1/(2B), as shown in top panel of
Figure 10, we will have larger number of data points per unit duration
of time, but information contained is not improved at all, compared
with the Nyquist sampling (sampling with Nyquist interval) case shown
in the middle panel of Figure 10. Such a samping with an interval
T < 1/(2B) is called the “oversampling”.

2. Undersampling
On the contrary, if the sampling interval is larger than the Nyquist
interval T > 1/(2B), a part of information in the original analog
continuous–time signal is lost in the sampled data due to the alias-
ing, as shown in bottom panel of Figure 10. This case is called the
“undersampling”.

3. Nyquist sampling
Therefore, the Nyquist sampling, i.e. sampling with the Nyquist inter-
val T = 1/(2B), is the optimum sampling for an analog continuous–
time signal with a band–limited baseband spectrum (middle panel of
Figure 10).

1.1.13 Sampling Function

We saw above that autocorrelation R(τ) and cross–correlation Rxy(τ) of
jointly stationary continuous–time random processes x(t) and y(t) with band–
limited baseband spectra are completely restored from autocorrelation R[n] =
R(nT ) and cross–correlation Rxy[n] = Rxy(nT ) of time samples of the pro-
cesses x[n] = x(nT ) and y[n] = y(nT ), provided that the sampling interval
T is shorter than or equal to the Nyquist interval, i.e. T ≤ 1/(2B), where B
is bandwidth of the spectra. But how can we functionally express R(τ) and
Rxy(τ) through R[n] and Rxy[n]?

The answer is given by the so–called “second part of the sampling theo-
rem”, which states that they satisfy equations:

R(τ) =
∞
∑

n=−∞
R[n]

sin
[

π
T
(τ − nT )

]

π
T
(τ − nT )

, (34)

and

Rxy(τ) =
∞
∑

n=−∞
Rxy[n]

sin
[

π
T
(τ − nT )

]

π
T
(τ − nT )

. (35)

The sinc function here:

SAn(τ) ≡
sin

[

π
T
(τ − nT )

]

π
T
(τ − nT )

, (36)
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is called the “sampling function”.

Proof :

We prove equation (34) for the autocorrelation only, since equa-
tion (35) for the cross–correlation can be derived exactly in the
same way.

According to equation (32), power spectrum S(ω) of a stationary
random continuous–time process x(t) and power spectrum SD(ω)
of its time–sample x[n] = x(nT ) with a sampling interval T are
related to each other by

SD(ω) =
1

T

∞
∑

k=−∞
S
(

ω + k
2π

T

)

.

Therefore, if the sampling interval T is shorter than or equal
to the Nyquist interval, T ≤ 1/(2B), we obtain the full analog
continuous–time baseband spectrum S(ω) by multiplying to the
spectrum of the time sample SD(ω) a rectangular window func-
tion P (ω) satisfying

P (ω) =











1 − π
T

< ω ≤ π
T
,

0 otherwise,
(37)

as illustrated in Figure 11. In fact, we have

S(ω) = T P (ω) SD(ω), (38)

from equation (32).

π/T-π/T 0
ω

Continuous-time spectrum S(w) Spectrum of sampled data SD (ω)

ω
0 π/T 2π/T-π/T-2π/T

P(ω)

Figure 11: Analog Continuous–Time spectrum S(ω) (left panel) is fully re-
stored from spectrum of time samples SD(ω) (right panel) by multiplying a
rectangular window function P (ω) given in equation (37).
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If we introduce Fourier transform pairs S(ω) ⇔ R(τ), P (ω) ⇔
p(τ) and SD(ω) ⇔ RD(τ), equation (38) implies

R(τ) = T p(τ) ∗ RD(τ) = T

∞
∫

−∞
p(τ − α) RD(α) dα, (39)

in view of the convolution theorem which we saw in Chapter 3,
where symbol “∗” stands for the operation of convolution.

We saw in Chapter 3 that inverse Fourier transform of the rect-
angular window function is a sinc function:

p(τ) =
1

2π

∞
∫

−∞
P (ω)eiωτ dω =

1

2π

π
T
∫

− π
T

eiωτ dω =
sin

(

πτ
T

)

πτ
. (40)

On the other hand, inverse Fourier transform of equation (32)
yields

RD(τ) =
1

2π

∞
∫

−∞
SD(ω)eiωτ dω =

1

2πT

∞
∫

−∞

∞
∑

k=−∞
S(ω + k

2π

T
)eiωτ dω

=
1

T
R(τ)

∞
∑

k=−∞
e−i 2πk

T
τ = R(τ)

∞
∑

n=−∞
δ(τ − nT ), (41)

where we used the shift theorem and the property of the comb
function given in equation (22):

1

T

∞
∑

k=−∞
e−i 2πk

T
τ =

∞
∑

n=−∞
δ(τ − nT ).

Therefore, equation (39) is reduced to

R(τ) = T
∞
∑

n=−∞

∞
∫

−∞

sin
(

π
T
(τ − α)

)

π(τ − α)
R(α) δ(α − nT ) dα

=
∞
∑

n=−∞
R(nT )

sin
(

π
T
(τ − nT )

)

π
T
(τ − nT )

,

which proves equation (34), since R(nT ) = R[n].

Now we are in position to answer to an interesting question: why ac-
curacy of delay determination in VLBI can be much superior (i.e. smaller)
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than a sampling interval of digitized voltage signals, from which the delay is
determined? For example, typical delay accuracy of Mark III VLBI system
has been 0.1 nanosecond (1 × 10−10 sec), while a typical sampling interval
in the Mark III observation has been 125 nanosecond (= 1/(2 × 2 MHz) ).
Details apart, an essential point of the answer is in the sampling theorem:
Nyquist sampled data are capable of determining the delay as accurately as
continuous–time data, from which the sampled data are formed, since they
are equivalent to each other in view of the sampling theorem.

The 2B optimal rate and the sampling function have been independently
discovered by a number of researchers in different countries, besides Shannon
(1949). The history even goes back to the 19th Century. Interested readers
could consult with a review paper by Meijering (2002).

1.1.14 Correlations of Nyquist Sampled Data with Rectangular
Passband Spectra

Let us consider continuous–time stationary random processes x(t) and y(t)
with rectangular power spectra S(ω) with a passband of bandwidth B:

S(ω) =











a 2πnB ≤| ω |< 2π(n + 1)B,

0 otherwise,
(42)

where n is an integer, and n = 0 corresponds to the particular case of the
baseband spectrum (Figure 12).

ν = ω /2πnB (n+1)B
... ...

-nB-(n+1)B

S(ω)

0 B-B

S(ω)

0 B-B ν = ω /2π

a

a

Figure 12: Rectangular passband (top) and baseband (bottom) power spec-
tra.

If we sample the data with Nyquist interval T = 1/(2B), then we obtain
following properties for correlations of the time samples.
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Autocorrelation:
Autocorrelation R(τ) of an original continuous–time process x(t) is ob-

tained by an inverse Fourier transformation of the passband power spectrum
S(ω) (top panel of Figure 12):

R(τ) =
1

2π

∞
∫

−∞
S(ω) eiωτ dω =

1

π
<

∞
∫

0

S(ω) eiωτ dω

=
a

π
<

2π(n+1)B
∫

2πnB

eiωτ dω =
a

π
<





ei2π(n+ 1
2)Bτ

πB
∫

−πB

eiω′τ dω′







=
a

π
<
[

ei2π(n+ 1
2)Bτ eiπBτ − e−iπBτ

i τ

]

= 2aB
sin(πBτ)

πBτ
cos

[

2π
(

n +
1

2

)

Bτ
]

, (43)

which has the familiar “white–fringe” form with the fringe pattern enclosed
by the bandwidth pattern, as we saw in Chapter 3.

In the baseband spectrum (bottom panel of Figure 12), we have n = 0,
and the autocorrelation of the continuous–time process has a sinc function
form:

R(τ) = 2aB
sin(2πBτ)

2πBτ
. (44)

For the correlation coefficient of the continuous–time process:

r(τ) =
R(τ)

R(0)
,

we have,

r(τ) =
sin(πBτ)

πBτ
cos

[

2π
(

n +
1

2

)

Bτ
]

, (45)

in a case of the general passband spectrum, and

r(τ) =
sin(2πBτ)

2πBτ
, (46)

in the particular case of the baseband spectrum.
Now, if we sample the continuous–time process x(t) with the Nyquist

interval T = 1/(2B), correlation coefficient of the time sample is given by

r[m] = r(mT ) =
sin

(

mπ
2

)

mπ
2

cos
[

mπ
(

n +
1

2

) ]

, (47)
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Figure 13: Correlation coefficient r(τ) of a continuous–time process with
rectangular passband spectrum when n = 2 (top left) and baseband spectrum
(top right), as given in equations (45) and (46). When this process is sampled
with the Nyquist interval T = 1/(2B), correlation coefficient r[m] of the time
sample has the “white–noise” form which is equal to 1 if m = 0, and equal
to 0 if m 6= 0 (bottom), since r[m] = r(mT ) = 0 for all m except for m = 0,
as shown in the top two panels.

for the passband spectrum, and

r[m] = r(mT ) =
sin(mπ)

mπ
, (48)

for the baseband spectrum, in particular. Both equations (47) and (48) show
the “white–noise” form of the time sample:

r[m] = δm0 =











1 if m = 0,

0 if m 6= 0,
(49)

as given in equation (8), where δij is Kronecker’s delta symbol. This shows
that different sample points are not correlated, and therefore independent
of each other, in time samples of Nyquist sampled data with rectangular
passband spectra.

Relationship between the correlation coefficient of the original continuous–
time data and that of the sampled data is illustrated in Figure 13.
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Cross–correlation:
If a cross–power spectrum Sxy(ω) of jointly stationary continuous–time

random processes x(t) and y(t) is real (i.e., has zero phase), and rectangu-
lar with bandwidth B, such as shown in Figure 12, the situation is much
the same with the autocorrelation case discussed above, and their cross–
correlation has the same functional form as equation (43) or (44). Therefore,
cross–correlation coefficient of their time samples has the “white–noise” form,
proportional to the one given in equation (49).

Let us now consider a little more general case, when amplitude A(ω) of
the cross–power spectrum Sxy(ω) is rectangular, as given in equation (42),
but phase is non–zero due to some delay τd between correlated signals in
processes x(t) and y(t), which may in general contain both the signals and
uncorrelated noises, just like in an interferometer problem. In such a case,
the cross–power spectrum, which contains the signal contribution only, has
a form:

Sxy(ω) = A(ω) e−iωτd, (50)

as we saw in Chapter 3.
Strictly speaking, actual passband spectra to be sampled in realistic in-

terferometers are IF spectra after the frequency–conversion, and hence their
phase spectra usually do not cross the origin, i.e., phases are non–zero at
ω = 0, unlike in equation (50), as we discussed in Chapter 3. Nevertheless,
we adopt equation (50) for simplicity, assuming an idealized case of “RF
correlation”, or a case when the “fringe stopping” is ideally performed so
that the phase crosses the origin, but the phase slope still remains due to an
imperfect “delay tracking”.

Then, in view of the shift theorem, the cross–correlation Rxy(τ):

Rxy(τ) =
1

2π

∞
∫

−∞
Sxy(ω) eiωτ dω,

should have a similar form as given in equation (43) or (44), but argument
τ is replaced by τ − τd. Thus, cross–correlation coefficient is given by

rxy(τ) =
Rxy(τ)

√

Rxx(0) Ryy(0)

=































ρ
sin[πB (τ − τd)]

πB (τ − τd)
cos

[

2π
(

n +
1

2

)

B (τ − τd)
]

(passband),

ρ
sin[2πB (τ − τd)]

2πB (τ − τd)
(baseband),

(51)
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where ρ is the maximum cross–correlation coefficient:

ρ =
Rxy(τd)

√

Rxx(0) Ryy(0)
. (52)

Note that the cross–correlation coefficient in the case of the passband spec-
trum with n 6= 0 again shows the “white–fringe” form with the cosine “fringe
pattern” enclosed within the sinc function envelope of “bandwidth pattern”.
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Figure 14: Cross–correlation coefficient rxy(τ) of jointly stationary
continuous–time processes x(t) and y(t) with rectangular passband spec-
trum when n = 2 (left: dotted line) and baseband spectrum with n = 0
(right: dotted line), as given by equation (51). τd is a time delay between
correlated processes x(t) and y(t). Also shown by bars is cross–correlation
coefficient rxy[m] = rxy(mT ) of time samples x[i] = x(iT ) and y[j] = y(jT )
sampled with the Nyquist interval T = 1/(2B), where B is a bandwidth of
the rectangular spectrum (equation (53)). Horizontal axis shows the time
difference τ normalized by the sampling interval T = 1/(2B). Vertical axis
is the cross–correlation coefficient rxy(τ) normalized by its maximum value:

ρ = Rxy(τd)/
√

Rxx(0) Ryy(0), where Rxy(τ), Rxx(τ), and Ryy(τ) are cross–

correlation and autocorrelations of x(t) and y(t), correspondingly.

Therefore, if we sample x(t) and y(t) with the Nyquist interval T =
1/(2B), cross–correlation coefficient of the time samples is

rxy[m] = rxy(mT )
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[

π
2
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(
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[

π
(

n +
1
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) (
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(passband),

ρ
sin

[

π
(

m − τd

T

)]

π
(

m − τd

T

) (baseband).

(53)

Relationship between the cross–correlation coefficient of the original continuous–
time data and that of the sampled data is illustrated in Figure 14.

The cross–correlation coefficient rxy[m] of the time samples given by equa-
tion (53) no longer has the symmetric “white–noise” form, as shown in equa-
tion (49) and in the bottom panel of Figure 13, due to the parallel shift of the
cross–correlation coefficient of the continuous–time data along the horizontal
axis which is caused by the delay τd. Also, it now depends upon n, i.e. upon
location of the passband spectrum on the frequency axis, since the “fringe
pattern” in the “white–fringe” depends on the location.

Thus, in the cross–correlation coefficient, the simple “white–noise” form
and the independence of sample points is obtained only when the delay τd is
reduced to zero (τd = 0) by a suitable compensating operation, such as the
“delay tracking” in the interferometry.

1.1.15 S/N Ratio of Correlator Output of Sampled Data

Let us now imagine a “semi–analog” correlator (non–existing in reality),
which would multiply and integrate (i.e. time–average) sampled but not
quantized (not clipped) data streams from two antennas of an interferometer.
We will estimate here a signal–to–noise ratio of such a correlator, before
examining actual digital correlators which deal with sampled and quantized
data.

Let us assume that the two sampled data streams x[i] and y[i] are time
samples of jointly stationary continuous–time random processes x(t) and
y(t), which obey the second–order Gaussian probability distribution, as we
assumed in the signal–to–noise–ratio discussion in Chapter 3. We further
assume that x(t) and y(t) have identical rectangular passband spectra with
bandwidth B, as given in equation (42), and they are sampled with the
Nyquist interval T = 1/(2B). Then, we have x[i] = x(i T ) and y[i] = y(i T ).
Also, we assume that the delay tracking and the fringe stopping are perfectely
performed beforehand, so that the two input data of exactly the same wave
front are being correlated.

In this case, “correlator output” Rs of the sampled data streams is an
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average of products of time samples over a certain number N :

Rs =
1

N

N
∑

i=1

x[i] y[i]. (54)

Expectation of this correlator output is nothing but the cross–correlation
Rxy[0] of x[i] and y[j] at zero argument, since

〈Rs〉 =
1

N

N
∑

i=1

〈x[i] y[i]〉 =
1

N

N
∑

i=1

〈x(i T ) y(i T )〉 = Rxy(0) = Rxy[0]. (55)

On the other hand, dispersion of this correlator output σ2
s is given by

σ2
s = 〈R2

s〉 − 〈Rs〉2, (56)

as we saw in Chapter 3. 〈R2
s〉 is described through a double sum of the

fourth statistical momentum in view of equation (54). The fourth statisti-
cal momentum is decomposed into a sum of products of second statistical
momenta (correlations), as we discussed in Chapter 3, since x[i] = x(i T )
and y[j] = y(j T ) obey the joint Gaussian probability distribution. Thus, we
have

〈R2
s〉 =

1

N2

N
∑

i=1

N
∑

j=1

〈x[i] y[i] x[j] y[j]〉

=
1

N2

N
∑

i=1

N
∑

j=1

{ 〈x[i] y[i]〉 〈x[j] y[j]〉

+ 〈x[i] x[j]〉 〈y[i] y[j]〉 + 〈x[i] y[j]〉 〈y[i] x[j]〉 }

=
1

N2

N
∑

i=1

N
∑

j=1

{

R2
xy[0] + Rxx[i − j] Ryy[i − j] + Rxy[i − j] Rxy[j − i]

}

= 〈Rs〉2 +
1

N
Rxx[0] Ryy[0] +

1

N
R2

xy[0]

= 〈Rs〉2 +
1

N
Rxx[0] Ryy[0] (1 + ρ2), (57)

where ρ =
Rxy[0]

√

Rxx[0] Ryy[0]
=

Rxy(0)
√

Rxx(0) Ryy(0)
is the maximum cross–correlation

coefficient, given in equation (52), in our assumed case with τd = 0. In de-
riving last two lines of equation (57), we used the “white–noise” relations for
autocorrelations:

Rxx[i − j] = Rxx[0] δij, and Ryy[i − j] = Ryy[0] δij, (58)
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in view of equation (49), and for cross–correlation:

Rxy[i − j] = Rxy[0] δij, (59)

which is also satisfied since we assumed τd = 0.
Therefore, the dispersion of the correlator output in equation (56) is now

given by

σ2
s =

1

N
Rxx[0] Ryy[0] (1 + ρ2), (60)

and we obtain the signal to noise ratio SNR:

SNR =
〈Rs〉
σs

=
Rxy[0]

√

Rxx[0] Ryy[0] (1 + ρ2)

√
N =

ρ√
1 + ρ2

√
N. (61)

In the expression of the maximum cross–correlation coefficient ρ, the auto-
correlations Rxx(0) and Ryy(0) are usually dominated by system noise con-
tributions from antenna–receiver systems of a radio interferometer, while
the cross–correlation Rxy(0) contains contribution of the signal from a ra-
dio source only, as we discussed in Chapter 3. Thus, when we observe a
continuum spectrum source, ρ is approximately given by

ρ =

√

TA1 TA2

TS1 TS2

, (62)

as we saw in Chapter 3, where TA1, TA2 are antenna temperatures, which
are assumed constant throughout the frequency band B in the case of the
continuum spectrum source, and TS1, TS2 are system noise temperatures, of
antenna 1 and antenna 2.

For most of radio sources, TA � TS, and, therefore, ρ � 1. In this case,
equation (61) is reduced to

SNR =
〈Rs〉
σs

= ρ
√

N =

√

TA1 TA2

TS1 TS2

√
N. (63)

If we denote an integration time of the correlation processing as τa, the
number of samples N with Nyquist interval 1 / (2 B) is equal to

N = 2 B τa. (64)

Therefore, equation (63) for the continuum spectrum source is reduced to

SNR =

√

TA1 TA2

TS1 TS2

√

2 B τa, (65)
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which is just identical with what we derived for correlator output of continuous–
time voltages in Chapter 3.

This means that the Nyquist sampling does not cause any loss of signal–
to–noise ratio of the correlator output, compared with the continuous–time
case, as expected from the sampling theorem. This also means that there is
no room for the oversampling, with a sampling rate higher than the Nyquist
rate (T < 1 / 2B), in improving the signal–to–noise ratio, despite increased
number of data points. Thus, the Nyquist sampling is really optimum for
the radio interferometry.

Note that equation (63) can be interpreted as showing
√

N–fold improve-
ment of the signal–to–noise ratio after repeating and averaging N “measure-
ments” of a power (product of two data streams, in our case). This means
that measurements of a power made at the Nyquist interval are indepen-
dent of each other, in the case of the rectangular passband spectra. This
is a consequence of the independence of time samples themselves discussed
earlier.

1.1.16 Nyquist Theorem and Nyquist Interval

The Nyquist theorem (Nyquist, 1928), which we saw in Chapter 2, says that
thermal noise power Wν per unit bandwidth emitted by a resistor in a thermal
equilibrium with a temperature T is equal to

Wν = k T, (66)

in the classical limit hν � kT , where k and h are the Boltzmann and rhe
Planck constants, respectively. Therefore, energy E emitted within a rect-
angular band with a bandwidth B during a time interval t is

E = B t k T. (67)

Since energy per one degree of freedom is equal to
1

2
k T under the thermal

equilibrium, number of degrees of freedom in this energy must be NF = 2 B t.
On the other hand, we have NI = 2 B t Nyquist intervals during the time

t, for the bandwidth B. In the case of the rectangular band, one Nyquist
interval contains one independent sample, as we saw earlier. Therefore, we
have NI independent samples in the emitted energy during the time t.

The equality NI = NF = 2 B t means that one independent sample
(Nyquist interval) in the information theory corresponds to one degree of
freedom in the physics, in the thermal noise.
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1.1.17 Higher–Order Sampling in VLBI Receiving Systems

In digital data processings as applied to radio astronomy, sampling of re-
ceived voltage signals has been traditionally done at the basebands (or the
video–bands), containing DC (zero frequency) as the lowest frequency, after
frequency conversions. This was the safest way for reliable sampling, when
clock rates of sampler circuits were not high enough, and not very stable.

Figure 15: Diagram of receiving system in KVN (Korean VLBI Network)
adopting the higher–order sampling technique (figure brought from KVN
webpage http://www.trao.re.kr/ kvn/).

However, it is not easy, in existing analog filtering technology, to im-
plement a good enough lowpass filter with sharp rectangular edges. This
situation has often resulted in rather poor frequency characteristics of the
baseband spectra, and made it difficult to achieve high signal–to–noise ratio,
close to the one expected from an ideally rectangular spectrum. Also, be-
cause of this difficulty, high quality baseband converters tend to be expensive,
especially when wide frequency bands are required.
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Recently, Noriyuki Kawaguchi and his colleagues successfully applied so–
called “higher–order sampling” technique to a number of VLBI systems,
including Japanese VERA (VLBI Exploration of Radio Astrometry). The
higher–order sampling is the sampling at a passband with n > 0, discussed
earlier. In general, it is easier to design good analog bandpass filters, with
nearly rectangular band shapes, when the ratio B/ν0 of bandwidth B to cen-
tral freuency ν0 is smaller. Therefore, it is easier to make a nearly rectangular
wideband filter for a passband, than for a baseband. In fact, the higher–order
sampling technique has been effective in wideband receiving systems with
typical bandwidth of 512 MHz or wider, for realizing better frequency char-
acteristics and higher signal–to–noise–ratio (Iguchi and Kawaguchi, 2002).

Figure 15 shows a diagram of KVN (Korean VLBI Network) receiving
system which adopts the higher–order sampling technique. A “baseband
converter” cuts off a 512 MHz band from a 2 GHz–wide first IF signal with
8.5 GHz center frequency (i.e. 7.5 – 9.5 GHz band), and converts it to a 512
MHz–wide passband signal with 768 MHz central frequency (i.e. 512–1024
MHz band), which is then sampled by a high–speed sampler.

Note here that, for the bandwidth B = 512 MHz, the passband nB ≤ ν <
(n+1)B with nB = 512 MHz means an odd number of n (i.e. n = 1), where
ν is the frequency and n is an integer. Therefore, spectrum of sampled signal
is inverted with respect to the spectrum of original continuous–time signal,
as we saw in Figure 8. In order to avoid possible inconveniences with the
inverted spectra, LO (local oscillator) frequency of the “baseband converter”
is chosen so that the passband spectrum is obtained in the lower sideband
(LSB), i.e. the spectrum is inverted with respect to the first IF spectrum. In
this way, one can obtain a spectrum of the sampled signal which is identical
with the one contained in the first IF signal.

It seems worthwhile to mention an interesting question here. The sam-
pling theorem says that the optimal sampling rate for a passband nB ≤ ν <
(n + 1)B is 2B. Does this mean that we can use an inexpensive low–speed
4 Msps (mega sample per second) sampler for sampling a signal in a high–
frequency passband, say, 10.000 – 10.002 GHz? The answer is “NO”, as N.
Kawaguchi clearly explains. Although the required sampling interval is really
1/(2B), sampling timings must be controlled with much greater accuracy,
better than 1/ν0, where ν0 is the central frequency of the passband (the “car-
rier” frequency). Otherwise, we will get all chaotically “jittered” data at each
of VLBI stations, from which we will never find any good fringe. Therefore, a
required sampler must be as accurate as, and as stable as, a 20 Gsps sampler,
say. Consequently, the high–speed sampling technology is indispensable for
successful application of the wideband higher–order sampling technique.

38



1.1.18 Clipping (or Quantization) of Analog Data

The sampling replaces data that are continuous in time with those discrete
in time. This is undoubtedly a big step towards digitizing analog data.
However, the sampling alone still leaves values of time samples analog, which
may vary arbitrarily from sample to sample. For a complete analog to digital
(A/D) conversion, we need to replace each continuously variable value with
an element of a finite set of discrete values expressible by a certain number
of bits. This step is called the “clipping” or the “quantization”.

Number of discrete values expressible by a given number of bits deter-
mines “number of levels of quantization”. Therefore, 1–bit, 2–bit, · · ·, n–bit
quantizations usually correspond to 2–level, 4–level, · · ·, 2n–level quantiza-
tions, respectively. There have been exceptions of the n–bit, 2n–level law of
quantization, such as 2–bit, 3–level quantization. However, such exceptional
quantization schemes are rarely used in present–day VLBI systems.

We will denote henceforth a discrete–time process with quantized values
as x̂[i]. If number of quantization levels is m, with discrete values x1, x2, · · ·,
xm, then x̂[i] must take one of these m values as illustrated in Figure 16. A
quantized process x̂[i] is supposed to be related in a prescribed way to an
original discrete–time process x[i] with analog values before clipping.

x1

x2

x3

x4

x5

x6

x7

x8

i

x[i]

Figure 16: An image of a quantized discrete–time process.

The larger the number of quantization levels (i.e. bits), the more infor-
mation can remain after the clipping. For reducing data size and increasing
processing speed, however, smaller number of bits is preferable. Thus one
has to choose an optimal number of quantization levels for one’s particu-
lar purpose. In VLBI, 1–bit (2–level) and 2–bit (4–level) quantizations are
mostly used.

Figure 17 and Table 1 show how quantized values are related to origi-
nal analog values in cases of VLBI 1–bit (left panel)and 2–bit (right panel)
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quantizations.
In 1–bit quantization scheme, clipped quantity takes only one of two

values: +1 and −1, depending upon if original analog value is positive or
negative, respectively. It is generally accepted that bit 0 is assigned to −1
state and bit 1 is assigned to +1 state.

x

+1

-1

0

0 1bit

x

+n

+1

-1

-n

0-v0 +v0

sign
 bit
mag.
 bit

0 (1) 0 (1) 1 (0) 1 (0)

0 (1) 1 (0) 0 (0) 1 (1)

x (clipped) x (clipped)

Figure 17: Relations between analog (unquantized) values x and clipped
(quantized) values x̂ for 1–bit (left) and 2–bit (right) quantizations, respec-
tively. Bit assignments are shown in bottom panels. In case of 2–bit quanti-
zation (left), a representative bit assingment for data recorder is shown along
with that for a correlator chip given in parentheses.

Quantization 1–bit (2–level) 2–bit (4–level)

Analog value x < 0 0 ≤ x x < −v0 −v0 ≤ x < 0 0 ≤ x < v0 v0 ≤ x

Clipped value x̂ = −1 x̂ = +1 x̂ = −n x̂ = −1 x̂ = +1 x̂ = +n

Recorder bit ass. 0 1 s 0, m 0 s 0, m 1 s 1, m 0 s 1, m 1

Correlator bit ass. 0 1 s 1, m 1 s 1, m 0 s 0, m 0 s 0, m 1

Table 1: Clipping criteria and bit assingments of VLBI 1–bit and 2–bit quan-
tizations. In the bit assignments for the 2–bit quantization scheme, “s” and
“m” stand for sign bit and magnitude bit, respectively.

In 2–bit, 4–level quantization scheme, 4 quantization states are separated
by three threshold values: −v0, 0, and v0. They correspond to 4 clipped
values: −n, −1, +1, and +n, as shown in left panel of Figure 17 and Table
1. Values of parameters v0 and n are chosen so that signal–to–noise ratio
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of the correlator output is maximized. Note that n thus determined is not
necessarily an integer.

Bit assignments to the 4 quantization states are not uniquely standardized
yet in the 2–bit quantization scheme. Existing VLBI data recording systems
mostly adopt 00, 01, 10, and 11 assignments for −n, −1, +1, and +n states,
where first and second bits stand for sign and magnitude bits, respectively,
but a widely used 2–bit quantization correlator chip adopts 11, 10, 00, and
01 assignments, as shown in Figure 17 and Table 1. Therefore, recorded bits
should be rearranged before the correlation, when we use a correlator with
the chip.

Sign bits in the 2–bit quantized data are equivalent to 0 and 1 bits in
the 1–bit quantized data. Therefore, it is usually not difficult to cross–
correlate 1–bit quantized and 2–bit quantized data, which are obtained in
different stations in the same VLBI observation with the same sampling
rate, using a 1–bit correlation mode, if we sacrify some of information in the
2–bit quantized data. In this case, the only necessary thing is to pick up sign
bits from the 2–bit qunatized data and cross–correlate them with the 1–bit
quantized data. Of course, direct cross–correlation of data with different
quantization schemes, such as 1–bit and 2–bit, can be performed without
loosing information (see, for example, Hagen and Farley, 1973), provided
that a special logical circuit for this purpose is built in a correlator.

0 t

Analog signal

+v0

-v0

2-bit quantized signal

+1

-1
t

+n

-n

Figure 18: A schematic view of time variation of original analog data (top)
and 2–bit quantized data (bottom).

In the 1–bit quantization scheme, only sign information of the original
analog data remains in the clipped data, and no information on magnitude
(amplitude) is left at all, as illustrated in Figure 3. In the 2–bit quantized
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data, some information on the magnitude (amplitude) of the analog data is
left, as illustrated in Figure 18, but the information is very vague.

Then, how much can we restore scientific information contained in the
original analog data of VLBI after clipping them with 1–bit or 2–bit quanti-
zation scheme, which looks quite rough at least at the first glance?

The clipping theorem gives a surprising answer. The theorem was orig-
inally developed by J.H. van Vleck in a study of radar–jamming during the
World War II conducted by the Radio Research Laboratory of Harvard Uni-
versity (Report No.51 on July 21, 1943), and was made public more than 20
years later by van Vleck and Middleton (1966).

1.1.19 Probability Distribution of Clipped Data

Before proceeding to the clipping theorem, we will examine how we can
describe probability distribution of clipped data.

As we discussed earlier, signals from astronomical radio sources, as well as
system noises produced in antenna–receiving systems and in environments,
are well approximated by Gaussian random processes. Therefore, let us con-
sider the data as jointly stationary continuous–time random processes x(t)
and y(t), which obey the second–order Gaussian probability density, intro-
duced in Chapter 3. Here we assume a zero–mean case (i.e. expectations
of x(t) and y(t) are equal to zero), and use notations suited to the current
discussions, slightly changing those adopted in Chapter 3. Also, we assume
that both x(t) and y(t) are real processes.

Then, we describe the zero–mean second–order Gaussian probability den-
sity of jointly stationary continuous–time random processes x(t+ τ) and y(t)
as:

f(x, y; τ) ≡ f(x, y; t + τ, t)

=
1

2πσxσy

√

1 − r2
xy(τ)

e
− 1

2[1 − r2
xy(τ)]

[

x2

σ2
x

− 2 rxy(τ)
x y

σx σy

+
y2

σ2
y

]

, (68)

where we introduced notations: σ2
x ≡ Rxx(0), σ2

y ≡ Ryy(0), for dispersions of
x(t) and y(t), and

rxy(τ) ≡ Rxy(τ)
√

Rxx(0) Ryy(0)
,

for cross–correlation coefficient of x(t+τ) and y(t). Here, Rxy(τ), Rxx(τ), and
Ryy(τ) are cross–correlation and autocorrelations of x(t) and y(t), as before.
We first assume that the cross–correlation coefficient rxy(τ) is smaller than
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1 in absolute value (i.e. r2
xy(τ) < 1) in order to avoid possible singularity in

our calculations which may ocur when r2
xy(τ) = 1.

x(t)

y(t)

x+dxx

y+dy
y

t

t+τ time

time

Figure 19: In case of continuous–time processes, Joint probability density
describes probability of the processes to take values contained within in-
finitesimal ranges at certain periods of time.

Of course, this joint probability density satisfies the general definition of
the cross–correlation:

Rxy(τ) = 〈x(t + τ) y(t)〉 =

∞
∫

−∞

∞
∫

−∞
x y f(x, y; τ) dx dy, (69)

as we saw in Chapter 3 (note that in our zero–mean case the cross–covariance
Cxy(τ) is just equal to the cross–correlation, i.e. Cxy(τ) = Rxy(τ) ).

It is worth to recall here that the joint probability means

“f(x, y; τ) dx dy is a probability for x(t + τ) and y(t) to be
within ranges:

x ≤ x(t + τ) < x + dx,

y ≤ y(t) < y + dy,

for any t (see Figure 19). The condition “for any t” corresponds
to our case of the stationary random processes.

Now if we consider discrete–time processes x[i] and y[i], which are time
samples of the above jointly stationary real continuous–time random pro-
cesses x(t) and y(t), i.e. x[i] = x(iT ) and y[i] = y(iT ), where T is a sampling
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interval, the time samples x[i] and y[i] are also jointly stationary as we saw
earlier, and their cross–correlation:

Rxy[m] = 〈x[n + m] y[n]〉 = Rxy(mT ) = 〈x(nT + mT ) y(nT )〉
is described by the same joint probability density of the continuous–time
processes f(x, y; τ) as

Rxy[m] = Rxy(mT ) =

∞
∫

−∞

∞
∫

−∞
x y f(x, y; mT ) dx dy. (70)

Let us then consider that we clip the time samples x[i] and y[i], and
obtain clipped discrete–time processes which we denote as x̂[i] and ŷ[i]. They
now take only discrete values of a finite number N (this means N–level
quantization) x1, x2, · · ·, xN and y1, y2, · · ·, yN .

x[i]

y[i]^

^

i

in

n+m

x1

x5

x4

x3

x2

y1

y5

y4

y3

y2

Figure 20: Joint probability P (xi, yj; m) of clipped processes x̂[n + m] and
ŷ[n] describes probability for them to take certain discrete values xi and yj

on quantization levels (here 5–level case is shown).

In this case, their cross–correlation Rx̂ŷ[m] = 〈x̂[n + m] ŷ[n]〉 is decribed
by an equation:

Rx̂ŷ[m] =
N
∑

i=1

N
∑

j=1

xi yjP (xi, yj; m), (71)

where P (xi, yj; m) is a joint probability for x̂[n+m] and ŷ[n] to take values:

x̂[n + m] = xi,

ŷ[n] = yj,
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for any n (See Figure 20).
This cross–correlation is what should be yielded by a digital correlator.

In fact, in view of the ergodicity, the cross–correlation is well approximated
by a time–average of products of N quantized data x̂[n + m] and ŷ[n]:

Rx̂ŷ[m] ∼= 1

N
N
∑

n=1

(x̂[m + n] ŷ[n]), (72)

if N is sufficiently large; and the digital correlator is nothing but a machine
which time–averages a large number of products of digital (i.e. sampled and
clipped) data.

At the first glance, equations (70) and (71) look quite different, and it
appears difficult to relate Rx̂ŷ[m] with Rxy[m]. However, if the quantization
condition is clearly specified, we can calculate P (xi, yj; m) rather easily from
f(x, y; mT ) (van Vleck and Middleton, 1966).

In case of the 1–bit, 2–level quantization, the condition is

x̂[i] =











+1 for x[i] = x(iT ) ≥ 0,

−1 for x[i] = x(iT ) < 0,

ŷ[i] =











+1 for y[i] = y(iT ) ≥ 0,

−1 for y[i] = y(iT ) < 0.
(73)

Therefore, the probability for x̂[i] to be +1, for example, is nothing but the
probability for x(iT ) to be 0 ≤ x(iT ) < +∞. Thus we can describe joint
probabilities for all combinations of quantization states through equations:

P (+1, +1; m) =

+∞
∫

0







+∞
∫

0

f(x, y; mT ) dx







dy,

P (−1, −1; m) =

0
∫

−∞







0
∫

−∞
f(x, y; mT ) dx







dy,

P (+1, −1; m) =

0
∫

−∞







+∞
∫

0

f(x, y; mT ) dx







dy,

P (−1, +1; m) =

+∞
∫

0







0
∫

−∞
f(x, y; mT ) dx







dy. (74)

Integrals in the RHS of these equations are readily calculated, since f(x, y; mT )
is given by the joint Gaussian probability density in equation (68).
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1.1.20 Cross–Correlation of 1–Bit Quantized Data:
van Vleck Relationship

In case of the 1–bit quantization, we have

N = 2, and











x1 = −1, x2 = +1,

y1 = −1, y2 = +1.
(75)

Therefore, cross–correlation Rx̂ŷ of clipped data x̂[i] and ŷ[i] is given by

Rx̂ŷ[m] =
2
∑

i=1

2
∑

j=1

xi yj P (xi, yj; m)

= (+1) · (+1) · P (+1, +1; m) + (−1) · (−1) · P (−1, −1; m)

+ (+1) · (−1) · P (+1, −1; m) + (−1) · (+1) · P (−1, +1; m)

= P (+1, +1; m) + P (−1, −1; m)

− P (+1, −1; m) − P (−1, +1; m). (76)

Because of symmetric properties of the joint Gaussian probability density
shown in equation (68), the joint probabilities given in equation (74) satisfy

P (+1, +1; m) = P (−1, −1; m),

P (+1, −1; m) = P (−1, +1; m). (77)

Also, by definition of the probability, sum of probabilities of all possible cases
must be equal to 1, and hence

P (+1, +1; m) + P (−1, −1; m) + P (+1, −1; m) + P (−1, +1; m)

= 2 P (+1, +1; m) + 2 P (+1, −1; m) = 1. (78)

Then, from equations (76), (77), and (78), we obtain

Rx̂ŷ[m] = P (+1, +1; m) + P (−1, −1; m)

− P (+1, −1; m) − P (−1, +1; m)

= 2 P (+1, +1; m) − 2 P (+1, −1; m)

= 4 P (+1, +1; m) − 1. (79)

Substituting the explicit form of the joint Gaussian probability density
in equation (68) into equation (74), we calculte 4 P (+1, +1; m):

4 P (+1, +1; m) = 4

+∞
∫

0







+∞
∫

0

f(x, y; mT ) dx







dy
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=

+∞
∫

0



















+∞
∫

0

2

πσxσy

√

1 − r2
xy

e
− 1

2(1 − r2
xy)

(

x2

σ2
x

− 2 rxy
x y

σx σy
+

y2

σ2
y

)

dx



















dy,

(80)

where T is the sampling interval, as before, and we denoted the cross–
correlation coefficient rxy[m] = rxy(mT ) as rxy, for simplicity.

Let us introduce new variables ζ and φ, which satisfy

x = σx ζ cos φ,

y = σy ζ sin φ. (81)

Then the above integral is reduced to

4 P (+1, +1; m) =
2

π
√

1 − r2
xy

π
2
∫

0

dφ

∞
∫

0

e
−ζ2(1 − rxy sin 2φ)

2(1 − r2
xy) ζ dζ

=
2

π

π
2
∫

0

√

1 − r2
xy

1 − rxy sin 2φ
dφ . (82)

If we further introduce another new variable θ, which satisfies

tan θ =
tanφ − rxy
√

1 − r2
xy

, and, therefore, θ = arctan





tanφ − rxy
√

1 − r2
xy



 , (83)

then we have

dθ

dφ
=

1

1 +
(

tan φ−rxy√
1−r2

xy

)2

1
√

1 − r2
xy

1

cos2 φ
=

√

1 − r2
xy

1 − rxy sin 2φ
. (84)

Note that this has the same form as the integrand of equation (82). The

limits of the integration φ = 0 and φ =
π

2
now correspond to

θ = θ0 ≡ − arctan





rxy
√

1 − r2
xy



 and θ =
π

2
, respectively. Terefore, equation

(82) becomes

4 P (+1, +1; m) =
2

π

π
2
∫

θ0

dθ = 1 − 2

π
θ0 = 1 +

2

π
arctan





rxy
√

1 − r2
xy



 . (85)
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Denoting the cross–correlation coefficient rxy through a sine function:

rxy = sin ξ, and, therefore,
rxy

√

1 − r2
xy

= tan ξ,

we obtain

4 P (+1, +1; m) = 1 +
2

π
arctan(tan ξ) = 1 +

2

π
ξ = 1 +

2

π
arcsin(rxy). (86)

We must specify here a range of arcsin(rxy), since, in general, arcsine is
a multi–value function, while the probability P (+1, +1; m) is certainly not.
In view of the general property of the probability, P (+1, +1, m) must be
confined within a range:

0 ≤ P (+1, +1, m) ≤ 1

2
.

Indeed, the upper limit corresponds to a case of the complete correlation
(identical data), for which

P (+1, +1; m) = P (−1, −1; m) =
1

2
,

because
P (+1, −1; m) = P (−1, +1; m) = 0,

while the lower limit corresponds to a case of the complete anti–correlation
(identical data but with different signs), for which

P (+1, +1; m) = P (−1, −1; m) = 0.

Since the cross–correlation coefficient rxy of the original unclipped data must
be 1 in the complete correlation, and −1 in the complete anti–correlation,
the arcsine function in equation (86) must be confined within a range:

−π

2
≤ arcsin(rxy) ≤

π

2
. (87)

Finally, from equation (79), we obtain

Rx̂ŷ[m] = 4P (+1, +1; m) − 1 =
2

π
arcsin(rxy[m])

=
2

π
arcsin





Rxy(mT )
√

Rxx(0) Ryy(0)



 . (88)
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Since x̂[i] x̂[i] = 1 and ŷ[i] ŷ[i] = 1 for any i, and therefore Rx̂x̂[0] = 1 and
Rŷŷ[0] = 1, for the 1–bit quantized data, their cross–correlation coefficient is
equal to their cross–correlation:

rx̂ŷ[m] =
Rx̂ŷ[m]

√

Rx̂x̂[0] Rŷŷ[0]
= Rx̂ŷ[m]. (89)

Therefore, equation (88) is described also as

rx̂ŷ[m] =
2

π
arcsin(rxy[m]). (90)

In a particular case of a small cross–correlation coefficient | rxy[m] |� 1,
which is usually the case in radio interferometry, we have an approximate
linear equation:

rx̂ŷ[m] =
2

π
rxy[m]. (91)

Although we derived equations (88) and (90) assuming that r2
xy < 1, it is

worth to confirm here that the resultant equations are valid in the limiting
cases of the complete correlation (rxy = 1 and rx̂ŷ = 1) and the complete
anti–correlation (rxy = −1 and rx̂ŷ = −1), too.

Equation (88) or (90) is generally called the “van Vleck relationship”.
This is indeed a surprising result which shows that the cross–correlation
coefficient rxy[m] of the original analog data is almost completely restored
from the cross–correlation coefficient rx̂ŷ[m] of the 1–bit quantized data by
a simple equation:

rxy[m] = sin
(

π

2
rx̂ŷ[m]

)

. (92)

In the case of the small cross–correlation coefficient | rxy[m] |� 1, we have

rxy[m] =
π

2
rx̂ŷ[m]. (93)

As we saw before, cross–correlation Rx̂ŷ[m] (= rx̂ŷ[m]) of digital data is
readily obtained from a digital correlator. Therefore, equations (92) and (93)
mean that, we can completely derive functional form and, therefore,
spectral shape of the original cross–correlation coefficient from an
output Rx̂ŷ[m] of a digital correlator of the 1–bit quantized data, though the
amplitude is reduced by a factor of ∼= 2/π (see, for example, Fifure 21).

It is natural that the cross–correlation Rxy(mT ) itself of the original ana-
log data cannot be directly obtained from the 1–bit quantized data alone
which carries sign information only. Nevertheless, we can restore the cross–
correlation Rxy(mT ) of the original analog data, if their dispersions Rxx(0)
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Figure 21: Spectra of water maser lines derived from 1–bit quantized data.
Right and left panels show water maser lines of Asymptotic Giant Branch
(AGB) stars RT Vir and VY CMa, respectively, obtained at two epochs
(top and bottom panels). Thin lines show total–power (i.e. autocorrela-
tion) spectra obtained with Mizusawa 10m antenna. Thick lines show VLBI
cross-power spectra obtained with Mizusawa 10m - Kagoshima 6m baseline.
The cross–power spectra show lower flux densities compared with the total–
power spectra because maser features are slightly extended and hence par-
tially resolved in the VLBI baseline. (Figure courtesy of Imai et al., Astron.
Astrophys, 317, L67-L70, 1997.)
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and Ryy(0) are known, for example, from suitable system–noise measure-
ments.

Derivation of this relationship owes to the clever use of the probabil-
ity relations in equation (74) by van Vleck. Note that J.H. van Vleck is a
scientist who in 1977 received Nobel Prize in Physics in his major field of
research: the “fundamental theoretical investigations of the electronic struc-
ture of magnetic and distorted systems”.

1.1.21 van Vleck Relationship in Autocorrelation

Although we examined the derivation of the van Vleck relationship for cross–
correlation, there is no restriction in applying the same logic to autocorre-
lation of a zero–mean stationary random process x(t). As a matter of fact,
van Vleck originally derived his relationship for the autocorrelation. The
only difference is that we have to use, instead of equation (68), second–order
Gaussian probability density for values of x(t) taken at times t + τ and t:

f(x1, x2; τ) =
1

2πσ2
x

√

1 − r2
xx(τ)

e
− 1

2(1 − r2
xx(τ))

(

x2
1 − 2rxx(τ) x1x2 + x2

2

σ2
x

)

,

(94)

where σ2
x = Rxx(0) is the dispersion and rxx(τ) =

Rxx(τ)

Rxx(0)
is the correlation

coefficient of x(t).
Exactly the same logic as in the cross–correlation case leads to an equa-

tion:

rx̂x̂[m] = Rx̂x̂[m] =
2

π
arcsin(rxx[m]) =

2

π
arcsin

(

Rxx(mT )

Rxx(0)

)

, (95)

for the correlation coefficient of the 1–bit quantized data x̂[i], which is the
van Vleck relationship in the autocorrelation.

1.1.22 Spectra of Clipped Data

The derivation of the van Vleck relationship, as we saw above, is quite general
and applicable to any data obeying joint Gaussian probability density. In
particular, the relationship is well valid for continuous–time data, though we
have dealt with only sampled data in our discussion of digitization of analog
data. Thus, we generally have

Rx̂ŷ(τ) =
2

π
arcsin(rxy(τ)), (96)
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for the cross–correlation, and

Rx̂x̂(τ) =
2

π
arcsin(rxx(τ)), and Rŷŷ(τ) =

2

π
arcsin(ryy(τ)), (97)

for the autocorrelations, with arbitrary time interval τ .
Therefore, we can calculate cross–power spectrum Sx̂ŷ(ω), and power

spectra Sx̂x̂(ω) and Sŷŷ(ω) of clipped data in terms of the ordinary Fourier
transformations:

Sx̂ŷ(ω) =

∞
∫

−∞
Rx̂ŷ(τ) e−iωτ dτ =

2

π

∞
∫

−∞
arcsin(rxy(τ)) e−iωτ dτ,

Sx̂x̂(ω) =

∞
∫

−∞
Rx̂x̂(τ) e−iωτ dτ =

2

π

∞
∫

−∞
arcsin(rxx(τ)) e−iωτ dτ,

Sŷŷ(ω) =

∞
∫

−∞
Rŷŷ(τ) e−iωτ dτ =

2

π

∞
∫

−∞
arcsin(ryy(τ)) e−iωτ dτ. (98)

Let us consider a case when analog data have rectangular spectra. This is
an important case from a practical point of view, since rectangular bandpass
filters are widely adopted in radio astronomy. We saw earlier that correlation
coefficients of analog data take sinc function forms when their spectra are
rectangular. Then, how spectra of the data will look like after clipping?

Figure 22 shows a power spectrum Sx̂x̂(ω) of 1–bit quantized data (solid
line in bottom panel) which is derived from analog data with a rectangular
power spectrum Sxx(ω) of bandwidth B (broken line in bottom panel). The
power spectrum of the analog data Sxx(ω) is normalized by the dispersion
Rxx(0) here. In other words, the “power spectrum” in this Figure is the
Fourier transform of the correlation coefficient rxx(τ). Therefore, areas under
the spectra (i.e. powers) of the analog and clipped data are equal. Also
shown are (1) correlation coefficient of the analog data rxx(τ) having a sinc
function form (upper left panel), and (2) correlation coefficient of the clipped

data rx̂x̂(τ) = Rx̂x̂(τ) =
2

π
arcsin(rxy(τ)) (upper right panel).

Although the bulk of the spectrum after clipping still remains nearly
band–limited, peak amplitude is somewhat reduced and a low level–skirt ap-
pears outside the original band which spreads over a wide range of frequency.
Thus, the original Nyquist interval (1 / (2B)) is no longer strictly optimum
for sampling the clipped data.

On the other hand, Figure 23 shows a cross–power spectrum Sx̂ŷ(ω) of 1–
bit quantized data x̂ and ŷ (solid line in bottom panel) which are derived from
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Figure 22: Original rectangular power spectrum Sxx(ω) with bandwidth B
(broken line in bottom panel) of analog data, and power spectrum Sx̂x̂(ω)
(solid line in bottom panel) of clipped data which is derived from the analog
data by means of the 1–bit quantization. Horizontal axis of the bottom
panel shows frequency ν normalized by the bandwidth B. Upper panels
show correlation coefficient rxx(τ) of the original analog data having a sinc
function form (left), and correlation coefficient rx̂x̂(τ) of the clipped data
(right). Horizontal axes of the upper panels show delay τ normalized by the
Nyquist interval (1 / (2 B)) of the original analog data.
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Figure 23: Original rectangular cross–power spectrum Sxy(ω) with band-
width B (broken line in bottom panel) of analog data, and cross–power spec-
trum Sx̂ŷ(ω) (solid line in bottom panel) of clipped data which are derived
from the analog data by means of the 1–bit quantization. Horizontal axis of
the bottom panel shows frequency ν normalized by the bandwidth B. Upper
panels show cross–correlation coefficient rxy(τ) of the original analog data
having a sinc function form (left), and cross–correlation coefficient rx̂ŷ(τ) of
the clipped data (right). The maximum cross–correlation coefficient of the
analog data is assumed to be 0.001. Horizontal axes of the upper panels show
delay τ normalized by the Nyquist interval (1 / (2 B)) of the original analog
data.
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analog data x and y having a real rectangular cross–power spectrum Sxy(ω)
of bandwidth B (broken line in bottom panel). The cross–power spectrum of
the analog data Sxy(ω) in this Figure is normalized by the geometric mean

of the dispersions
√

Rxx(0) Ryy(0), and, therefore, is the Fourier transform of

the cross–correlation coefficient rxy(τ). We assume here that the maximum
cross–correlation coefficient of the analog data is small, and, for definiteness,
set it to be 0.001. Upper panels of the Figure show (1) cross–correlation
coefficient of the analog data rxy(τ) having a sinc function form (left), and (2)

cross–correlation coefficient of the clipped data rx̂ŷ(τ) = Rx̂ŷ(τ) ∼= 2

π
rxy(τ)

(right).
Unlike in the power spectrum case, the spectrum after clipping remains

rectangular, though peak amplitude is reduced by a factor of 2/π ∼= 0.6366
compared with the original analog one, in this cross–power spectrum case.
This is because the cross–correlation coefficient of the clipped data is just
proportional to the cross–correlation coefficient of the original analog data
with a proportionality coefficient of 2/π, in the approximation of the small
cross–correlation coefficient | rxy(τ) |� 1, which we assumed here.

1.1.23 Price’s Theorem

Now we proceed to the 2–bit quantization case. Although we can derive
the cross–correlation of the 2–bit quantized data by evaluating probabilities
of quantization states, as we learned in the 1–bit quantization case, use of
Price’s theorem (Price, 1958) offers a simpler solution.

The theorem states the following.
Suppose we have zero–mean stationary random processes x(t) and y(t)

which satisfy joint Gaussian probability density:

f(x, y) ≡ f(x, y; τ) =
1

2πσxσy

√
1 − r2

e
− 1

2(1 − r2)

(

x2

σ2
x

− 2 r
x y

σx σy
+

y2

σ2
y

)

,

where σ2
x = Rxx(0) and σ2

y = Ryy(0) are dispersions and r ≡ rxy(τ) =
Rxy(τ)

σx σy

is a cross–correlation coefficient of the processes x(t) and y(t).
Then, for an arbitrary function g(x, y) with expectation

〈g(x, y)〉 =

∞
∫

−∞

∞
∫

−∞
g(x, y)f(x, y) dx dy, (99)
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we have

1

σn
x σn

y

∂n〈g(x, y)〉
∂ rn

=
〈

∂2ng(x, y)

∂xn ∂yn

〉

, (100)

(Price, 1958).

Auxiliary Formula

In order to prove Price’s theorem, we first derive an auxiliary formula
(Papoulis, 1984):

1

σn
x σn

y

∂nf(x, y)

∂rn
=

∂2nf(x, y)

∂xn ∂yn
, or

∂nf(x′, y′)

∂rn
=

∂2nf(x′, y′)

∂x′n ∂y′n , (101)

where

x′ =
x

σx
, y′ =

y

σy
,

f(x′, y′) =
1

2π σx σy

√
1 − r2

e
−x′2 − 2 r x′ y′ + y′2

2(1 − r2) . (102)

We verify this formula using the method of mathematical induction.

• For n = 1, simple differentiations show

∂f(x′, y′)

∂r
=

r (1 − r2) + (r x′ − y′) (r y′ − x′)

2πσx σy (1 − r2)5/2
e
−x′2 − 2 r x′ y′ + y′2

2(1 − r2) ,

and

∂2f(x′, y′)

∂x′ ∂y′ =
r (1 − r2) + (r x′ − y′) (r y′ − x′)

2π σx σy (1 − r2)5/2
e
−x′2 − 2 r x′ y′ + y′2

2(1 − r2) .

Therefore,
∂f(x′, y′)

∂r
=

∂2f(x′, y′)

∂x′ ∂y′ , i.e. the formula is valid for n = 1.

• Now, if the formula is valid for n = m:

∂mf(x′, y′)

∂rm
=

∂2mf(x′, y′)

∂x′m ∂y′m ,

56



then, for n = m + 1, we have

∂m+1f(x′, y′)

∂rm+1
=

∂

∂r

∂mf(x′, y′)

∂rm
=

∂

∂r

∂2mf(x′, y′)

∂x′m ∂y′m

=
∂2m

∂x′m ∂y′m
∂f(x′, y′)

∂r
=

∂2m

∂x′m ∂y′m
∂2f(x′, y′)

∂x′ ∂y′ =
∂2(m+1)f(x′, y′)

∂x′m+1 ∂y′m+1 ,

i.e., the formula is also valid for n = m + 1.

Since the formula is valid for n = 1, this means that the formula is
valid for arbitrary n ≥ 1.

Thus, we confirmed the auxiliary formula.

Proof of Price’s Theorem

We now prove Price’s theorem, using again the method of mathematical
induction.

• For n = 1, we have

1

σx σy

∂〈g(x, y)〉
∂ r

=

∞
∫

−∞

∞
∫

−∞
g

1

σx σy

∂f

∂r
dx dy =

∞
∫

−∞

∞
∫

−∞
g

∂2f

∂x ∂y
dx dy

=

∞
∫

−∞

∞
∫

−∞

[

∂

∂x

(

g
∂f

∂y

)

− ∂

∂y

(

∂g

∂x
f

)

+
∂2g

∂x ∂y
f

]

dx dy

=

∞
∫

−∞

(

g
∂f

∂y

)

∣

∣

∣

∣

x=+∞

x=−∞
dy −

∞
∫

−∞

(

∂g

∂x
f

)

∣

∣

∣

∣

y=+∞

y=−∞
dx +

∞
∫

−∞

∞
∫

−∞

∂2g

∂x ∂y
f dx dy,

where we used the auxiliary formula:

1

σx σy

∂f(x, y)

∂r
=

∂2f(x, y)

∂x ∂y
.

First two terms in the RHS vanish as long as g(x, y) e−(x2+y2) converges
to zero at x = ±∞ and y = ±∞. Thus,

1

σx σy

∂〈g(x, y)〉
∂ r

=

∞
∫

−∞

∞
∫

−∞

∂2g(x, y)

∂x ∂y
f(x, y) dx dy =

〈

∂2g(x, y)

∂x ∂y

〉

,

i.e. the theorem is valid for n = 1.
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• Now, if the theorem is valid for n = m:

1

σm
x σm

y

∂m〈g(x, y)〉
∂ rm

=
〈

∂2mg(x, y)

∂xm ∂ym

〉

,

then, for n = m + 1, we have

1

σm+1
x σm+1

y

∂m+1〈g(x, y)〉
∂rm+1

=
1

σx σy

∂

∂r

(

1

σm
x σm

y

∂m〈g(x, y)〉
∂ rm

)

=
1

σx σy

∂

∂r

〈

∂2mg(x, y)

∂xm ∂ym

〉

=

∞
∫

−∞

∞
∫

−∞

∂2mg(x, y)

∂xm ∂ym

1

σx σy

∂f(x, y)

∂r
dx dy

=

∞
∫

−∞

∞
∫

−∞

∂2mg(x, y)

∂xm ∂ym

∂2f(x, y)

∂x ∂y
dx dy.

Integrating by parts again, we see that the last term is equal to

∞
∫

−∞

∞
∫

−∞

∂2(m+1)g(x, y)

∂xm+1 ∂ym+1
f(x, y) dx dy =

〈

∂2(m+1)g(x, y)

∂xm+1 ∂ym+1

〉

,

as long as g(x, y) e−(x2+y2) converges to zero at x = ±∞ and y = ±∞.
Therefore, the theorem is valid for n = m + 1, and, hence, for any
n ≥ 1.

Thus we proved Price’s Theorem.

Price’s Theorem in the 1–Bit Quantaization Case

Let us experience usefulness of Price’s theorem in the 1–bit quantization
case as an example. If we choose g(x, y) = x̂ ŷ, then we have

〈g(x, y)〉 = Rx̂ŷ = 〈x̂ ŷ〉,

with

x̂(x) =











+1 : x ≥ 0

−1 : x < 0,
ŷ(y) =











+1 : y ≥ 0

−1 : y < 0,

in the 1–bit quantization case. We again assume that x and y obey the joint
Gaussian probability density:

f(x, y) =
1

2πσxσy

√
1 − r2

e
− 1

2(1 − r2)

(

x2

σ2
x

− 2 r
x y

σx σy

+
y2

σ2
y

)

.
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Now, Price’s theorem says

1

σx σy

∂Rx̂ŷ

∂r
=
〈

∂2(x̂ ŷ)

∂x ∂y

〉

=
〈

∂x̂

∂x

∂ŷ

∂y

〉

,

and we have
∂x̂

∂x
= 2 δ(x),

∂ŷ

∂y
= 2 δ(y),

in the 1–bit quantization case. Therefore

〈

∂x̂

∂x

∂ŷ

∂y

〉

=

∞
∫

−∞

∞
∫

−∞
4 δ(x) δ(y) f(x, y) dx dy =

2

π σx σy

√
1 − r2

.

Thus we have
∂Rx̂ŷ

∂r
=

2

π
√

1 − r2
,

and hence

Rx̂ŷ =
2

π

r
∫

0

dr′√
1 − r′2

=
2

π
arcsin(r),

where the limits of the integration are chosen to satisfy Rx̂ŷ = 0 at r = 0.
Thus, Price’s theorem allows us to derive the van Vleck relationship in

the really straightforward way.

1.1.24 Cross–Correlation of the 2-Bit Quantized Data

Now we consider, for definiteness, cross–correlation Rx̂ŷ(τ) of 2–bit quantized
data x̂(t) and ŷ(t), though logics below are equally applicable to autocorre-
lation as well. Let clipping criteria for the 2–bit quantization are those given
in Figure 17 and Table 1. We assume a simple case where dispersions of
the original analog data x(t) and y(t) are identical, and denote the common
value as σ, i.e. σx = σy = σ. Then, the joint probability density is given by

f(x, y) ≡ f(x, y; τ) =
1

2πσ2
√

1 − r2
e
−x2 − 2 r x y + y2

2σ2 (1 − r2) , (103)

where r ≡ rxy(τ) is the cross–correlation coefficient of the analog data.
According to Price’s theorem, the cross–correlation of the clipped data

Rx̂ŷ(τ) satisfies
1

σ2

∂Rx̂ŷ

∂r
=
〈

∂2(x̂ ŷ)

∂x ∂y

〉

=
〈

∂x̂

∂x

∂ŷ

∂y

〉

, where the derivatives
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are now given by

∂x̂

∂x
= (n − 1) δ(x + v0) + 2 δ(x) + (n − 1) δ(x − v0),

∂ŷ

∂y
= (n − 1) δ(y + v0) + 2 δ(y) + (n − 1) δ(y − v0).

Using these derivatives, we can calculate

∂Rx̂ŷ

∂r
= σ2

〈

∂x̂

∂x

∂ŷ

∂y

〉

= σ2

∞
∫

−∞

∞
∫

−∞

∂x̂

∂x

∂ŷ

∂y
f(x, y) dx dy.

After simple manipulations, we obtain

∂Rx̂ŷ

∂r
=

1

π
√

1 − r2

{

(n − 1)2

[

e
− v2

0
σ2(1+r) + e

− v2
0

σ2(1−r)

]

+ 4(n − 1)e
− v2

0
2σ2(1−r2) + 2

}

.

Therefore, the solution which satisfies a condition Rx̂ŷ = 0 when r = 0, is

Rx̂ŷ =
1

π

r
∫

0

1√
1 − r′2

{

(n − 1)2

[

e
− v2

0
σ2(1+r′) + e

− v2
0

σ2(1−r′)

]

+4(n − 1)e
− v2

0

2σ2(1−r′2) + 2







dr′. (104)

In the limiting case where | r |� 1, the cross–correlation is given by

Rx̂ŷ =
r

π

[

2 (n − 1)2 e−
v2
0

σ2 + 4 (n − 1) e−
v2
0

2σ2 + 2

]

=
2 r

π
[(n−1) E+1]2, (105)

where we introduced a notation

E ≡ e−
v2
0

2σ2 . (106)

Note that the cross–correlation of the clipped data Rx̂ŷ(τ) is proportional to
the analog cross–correlation coefficient r = rxy(τ), in this case.

1.1.25 Cross–Correlation Coefficient of the 2–Bit Quantized Data

Now we would like to calculate cross–correlation coefficient rx̂ŷ(τ) of the 2–bit
quantized data. For this purpose, we need their dispersions: σ2

x̂x̂ = Rx̂x̂(0)
and σ2

ŷŷ = Rŷŷ(0), other than the cross–correlation Rx̂ŷ(τ).
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We assumed here that analog data x(t) and y(t) have equal dispersions:
Rxx(0) = Ryy(0) = σ2, and therefore they obey identical Gaussian probability
densities:

f(x) =
1

σ
√

2 π
e−

x2

2 σ2 , and f(y) =
1

σ
√

2 π
e−

y2

2 σ2 . (107)

Since 4 quantization states in the 2–bit clipped data take values −n, −1,
+1, and +n, the joint probabilities of the quantization states of x̂[n] and x̂[n]
(or ŷ[n] and ŷ[n]), taken at the same time, satisfy

P (−n, −n; 0) + P (−1, −1; 0) + P (+1, +1; 0) + P (+n, +n; 0) = 1, (108)

and the dispersion: Rx̂x̂(0) = 〈x̂(t) x̂(t)〉 =
4
∑

i=1

xi xi P (xi, xi; 0), must be

Rx̂x̂(0) = n2 P (−n, −n; 0) + P (−1, −1; 0)

+ P (+1, +1; 0) + n2 P (+n, +n; 0). (109)

Combining equations (108) and (109), and repeating the same thing for ŷ,
we obtain

Rx̂x̂(0) = Rŷŷ(0) = Φ + n2 (1 − Φ), (110)

where we introduced a notation:

Φ = P (−1, −1; 0) + P (+1, +1; 0) =
1

σ
√

2 π

+v0
∫

−v0

e−
ξ2

2 σ2 dξ. (111)

We used here the explicit form of the probability density in equation (107).
Thus, the cross–correlation coefficient of the 2–bit quantized data rx̂ŷ(τ)

is given by

rx̂ŷ(τ) =
Rx̂ŷ(τ)

√

Rx̂x̂(0) Rŷŷ(0)
=

Rx̂ŷ(τ)

Φ + n2 (1 − Φ)

=
1

π [Φ + n2 (1 − Φ)]

rxy(τ)
∫

0

1√
1 − r′2

{

(n − 1)2

[

e
− v2

0
σ2(1+r′) + e

− v2
0

σ2(1−r′)

]

+4(n − 1)e
− v2

0

2σ2(1−r′2) + 2







dr′, (112)

as a function of the cross–correlation coefficient of the original analog data
r = rxy(τ). This is an analogue of the van Vleck relationship in the 2–bit
quantization case.
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In the limiting case of | rxy(τ) |� 1, equations (105) and (110) yield

rx̂ŷ(τ) =
2 [(n − 1) E + 1]2

π [Φ + n2 (1 − Φ)]
rxy(τ). (113)

This is an analogue of equation (91) in the 2–bit quantization case.
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Figure 24: Correlation coefficients of 1–bit (dotted line) and 2–bit (solid
line) quantized data with n = 3 and v0 = 0.996 σ as functions of the analog
correlation coefficient.

Exactly the same logic leads to the same functional forms as equations
(112) and (113) for a relationship between the correlation coefficient of the
2–bit quantized data rx̂x̂(τ) and that of the original analog data rxx(τ). Thus
the correlation coefficient of the 2–bit quantized data is given by

rx̂x̂(τ) =
1

π [Φ + n2 (1 − Φ)]

rxx(τ)
∫

0

1√
1 − r′2

{

(n − 1)2

[

e
− v2

0
σ2(1+r′) + e

− v2
0

σ2(1−r′)

]

+4(n − 1)e
− v2

0

2σ2(1−r′2) + 2







dr′, (114)

62



for a general case, and

rx̂x̂(τ) =
2 [(n − 1) E + 1]2

π [Φ + n2 (1 − Φ)]
rxx(τ), (115)

for the limiting case of | rxx(τ) |� 1.

Figure 24 shows the relationship between the correlation coefficient, which
could be either (auto–)correlation coefficient or cross–correlation coefficient,
of the clipped data and that of the original analog data. The dotted line
shows the van Vleck relationship for the 1–bit quantization case as given by
equation (90) or (95). The solid line shows the relationship for the 2–bit
quantization case as given by equation (112) or (114) for a particular set of
parameters n = 3 and v0 = 0.996 σ.

1.1.26 Power and Cross–Power Spectra of 2-Bit Quantized Data

We can now calculate power spectrum Sx̂x̂(ω) and cross–power spectrumSx̂ŷ(ω)
of the 2–bit quantized data, which are normalized by the dispersion σ2

x̂ and
geometric mean of the dispersions σx̂ σŷ, respectively, by Fourier transforming
the correlation coefficient rx̂x̂(τ) and the cross–correlation coefficient rx̂ŷ(τ)
given in equation (112),

Sx̂x̂(ω) =

∞
∫

−∞
rx̂x̂(τ) e−iωτ dτ =

∞
∫

−∞
F (rxx(τ)) e−iωτ dτ,

Sx̂ŷ(ω) =

∞
∫

−∞
rx̂ŷ(τ) e−iωτ dτ =

∞
∫

−∞
F (rxy(τ)) e−iωτ dτ, (116)

where the function F (r) is given by

F (r) =
1

π (Φ + n2 (1 − Φ)

r
∫

0

1√
1 − r′2

{

(n − 1)2

[

e
− v2

0
σ2(1+r′) + e

− v2
0

σ2(1−r′)

]

+4(n − 1)e
− v2

0

2σ2(1−r′2) + 2







dr′.

Let us again consider the case when analog data have rectangular spectra.
Figure 25 shows the power spectrum Sx̂x̂(ω) of the 2–bit quantized data in
the case with n = 3 and v0 = 0.996 σ (solid line in bottom panel) and that of
the original analog data Sxx(ω) with the rectangular shape of bandwidth B
(broken line in bottom panel). Similarly to the 1–bit case, areas under the
spectra (i.e. powers) of the analog and clipped data are equal. Also shown
are (1) correlation coefficient of the analog data rxx(τ) having a sinc function
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Figure 25: Original rectangular power spectrum Sxx(ω) with bandwidth B
(broken line in bottom panel) of the analog data, and power spectrum Sx̂x̂(ω)
(solid line in bottom panel) of the 2–bit quantized data with n = 3 and v0 =
0.996 σ . Horizontal axis of the bottom panel shows frequency ν normalized
by the bandwidth B. Upper panels show correlation coefficient rxx(τ) of
the original analog data having a sinc function form (left), and correlation
coefficient rx̂x̂(τ) of the 2–bit quantized data (right). Horizontal axes of the
upper panels show delay τ normalized by the Nyquist interval (1 / (2 B)) of
the original analog data.
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Figure 26: Original rectangular cross–power spectrum Sxy(ω) with band-
width B (broken line in bottom panel) of the analog data, and cross–power
spectrum Sx̂ŷ(ω) (solid line in bottom panel) of the 2–bit quantized data with
n = 3 and v0 = 0.996 σ . Horizontal axis of the bottom panel shows frequency
ν normalized by the bandwidth B. Upper panels show cross–correlation co-
efficient rxy(τ) of the original analog data having a sinc function form (left),
and cross–correlation coefficient rx̂ŷ(τ) of the 2–bit quatized data (right).
The maximum cross–correlation coefficient of the analog data is assumed to
be 0.001. Horizontal axes of the upper panels show delay τ which is normal-
ized by the Nyquist interval (1 / (2 B)) of the original analog data.
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form (upper left panel), and (2) correlation coefficient of the 2–bit quantized
data rx̂x̂(τ) (upper right panel).

The spectrum after clipping again shows somewhat reduced peak ampli-
tude and a low–level skirt extending over a wide range of frequency. Thus,
the original Nyquist interval (1 / (2B)) is not strictly optimum for sampling
the clipped data again, though to a smaller extent compared with the 1–bit
case.

On the other hand, Figure 26 shows a cross–power spectrum Sx̂ŷ(ω) of the
2–bit quantized data x̂ and ŷ in the case with n = 3 and v0 = 0.996 σ (solid
line in bottom panel) and that of the original analog data x and y, having a
real rectangular cross–power spectrum Sxy(ω) of bandwidth B (broken line in
bottom panel). We assumed here again that the maximum cross–correlation
coefficient of the analog data is as small as 0.001, for definiteness. Upper
panels of the Figure show (1) cross–correlation coefficient of the analog data
rxy(τ) having a sinc function form (left), and (2) cross–correlation coefficient
of the clipped data rx̂ŷ(τ) (right). Note that the spectrum after clipping
remains again rectangular, because of the approximate linearity between the
analog and clipped cross–correlation coefficients.

1.1.27 Dispersion of Digital Correlator Output

Let us now examine the signal–to–noise ratio of an output of a digital corre-
lator. How does the S/N ratio differ from the one expected from the analog
or “semi–analog” correlator, which we saw earlier? For this purpose, we first
consider dispersion of the digital correlator output.

The output R of a digital correlator, which averages products of N sam-
ples of clipped data x̂[i] and ŷ[i] from two antennas in a radio interferometer,
is

R =
1

N
N
∑

i=1

x̂[i] ŷ[i]. (117)

We again assume here that the delay tracking and the fringe stopping are
completely performed before the multiplication, so that signal parts in the
two data streams x̂[i] and ŷ[i] are perfectly aligned.

Under the assumption of the stationary random processes, the expecta-
tion 〈R〉 and the dispersion σ2

R of the output R are given by

〈R〉 = 〈x̂[i] ŷ[i]〉 = Rx̂ŷ[0], (118)

σ2
R = 〈R2〉 − 〈R〉2 =

1

N 2

N
∑

i=1

N
∑

j=1

〈x̂[i] ŷ[i] x̂[j] ŷ[j]〉 − R2
x̂ŷ[0]. (119)
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Note that usually N is a huge number. For example, if we integrate data
sampled with a rate of 4 Msps (mega sample per second) for 1 second, then
N ≈ 4, 000, 000.

Let us assume that the original analog data x(t) and y(t) have rectangular
baseband spectra with bandwith B, and the data are sampled with Nyquist
rate 2B. In such a case, different sample pairs are independent in the analog
data, as we discussed earlier, i.e. Rxy[m], Rxx[m], and Ryy[m] are all zero,
if m 6= 0. The same statement is valid for the 1–bit quantized and 2–bit
quantized data, since correlation coefficients, and correlations, too, of these
clipped data are equal to zero when those of the original analog data are
zero, as we can easily see in equations (90), (95), and (112). Thus, Rx̂ŷ[m],
Rx̂x̂[m], and Rŷŷ[m] are also all zero, if m 6= 0. In addition, we assume that
the cross–correlation Rx̂ŷ[0] is much smaller than the autocorrelations Rx̂x̂[0]
and Rŷŷ[0], as usually so in radio interferometers.

Then in the double sum of equation (119):

N
∑

i=1

N
∑

j=1

〈x̂[i] ŷ[i] x̂[j] ŷ[j]〉 =
N
∑

i=1

〈x̂[i] ŷ[i] x̂[i] ŷ[i]〉 +
N
∑

i=1

N
∑

j 6=i

〈x̂[i] ŷ[i] x̂[j] ŷ[j]〉,

(120)
dominating terms will be

N
∑

i=1

N
∑

j=1

〈x̂[i] ŷ[i] x̂[j] ŷ[j]〉 ∼=
N
∑

i=1

〈x̂[i] x̂[i]〉 〈ŷ[i] ŷ[i]〉 +
N
∑

i=1

N
∑

j 6=i

〈x̂[i] ŷ[i]〉 〈x̂[j] ŷ[j]〉

= N Rx̂x̂[0] Rŷŷ[0] + N (N − 1) R2
x̂ŷ[0] ∼= N Rx̂x̂[0] Rŷŷ[0] + N 2 R2

x̂ŷ[0],

(121)

where we neglected 1 compared with the large number N .
Now equations (119) and (121) yeild an approximate formula for the

dispersion of the digital correlator output:

σ2
R
∼= 1

N Rx̂x̂[0] Rŷŷ[0] + R2
x̂ŷ[0] − R2

x̂ŷ[0] =
1

N Rx̂x̂[0] Rŷŷ[0]. (122)

1.1.28 S/N Ratio of Digital Correlator Output

We are now ready to calculate the signal 〈R〉 to noise σR ratio SNR of the
digital correlator output, using equation (122). We obtain

SNR =
〈R〉
σR

=
√
N Rx̂ŷ[0]
√

Rx̂x̂[0] Rŷŷ[0]
=

√
N rx̂ŷ[0] =

√
N rx̂ŷ[0]

rxy[0]
ρ, (123)

where ρ ≡ rxy[0] is the maximum cross–correlation coefficient of the original
analog data under our assumption of the perfect delay tracking and fringe
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stopping. As we saw earlier, the maximum cross–correlation coefficient ρ for
a continuum spectrum source is approximately given by

ρ =

√

TA1 TA2

TS1 TS2

,

where TA1, TA2 and TS1 , TS2 are antenna temperatures and system noise
temperatures, respectively, at antennas 1 and 2, which are both assumed
constant throuout the frequency band B. On the other hand, if the integra-
tion time is τa, the number of samples N with the Nyquist interval 1 / (2 B)
is equal to

N = 2 B τa.

Therefore, equation (123) is reduced to

SNR =
rx̂ŷ[0]

rxy[0]

√

TA1 TA2

TS1 TS2

√

2 B τa =
rx̂ŷ[0]

rxy[0]
SNR analog , (124)

where

SNR analog ≡
√

TA1 TA2

TS1 TS2

√

2 B τa ,

is the signal–to–noise ratio of an analog correlator output for the same con-
tinuum spectrum source received with the same antenna–receiver systems,
as we saw in equation (65).

Thus the so–called “coherence factor” ηc, which is defined as

ηc ≡
SNR

SNRanalog

, (125)

is given by

ηc =
rx̂ŷ[0]

rxy[0]
, (126)

in this case.
For the case of the small cross–correlation coefficient | rxy[0] |� 1, which

is usually the case in radio interferometry, rx̂ŷ[0] of the clipped data is pro-
portional to rxy[0] of the original analog data. Then, in view of equations
(91) and (113), we have

ηc =
2

π
∼= 0.64, (127)

for the 1–bit quantization case, and

ηc =
2 [(n − 1) E + 1]2

π [Φ + n2 (1 − Φ)]
, (128)
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for the 2–bit quantization case.
With the coherence factor ηc, equation (124) is reduced to

SNR = ηc

√

TA1 TA2

TS1 TS2

√

2 B τa, (129)

which is an important formula for estimating sensitivity of a radio interfer-
ometer observing a continuum spectrum source. Note that the coherence
factor as given by equation (126) still takes into account only the loss due
to effects of clipping. Usually, the factor is further reduced in view of losses
occuring through digital processing in hardware correlators.

1.1.29 Optimum Parameters v0 and n in the 2–Bit Quantization

We mentioned earlier that the two parameters in the 2–bit quantization, the
threshold v0 and the higher–level value n, are chosen so that the signal–to–
noise ratio of the digital correlator output is maximized. This condition is
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Figure 27: Coherence factor of the 2–bit quantized data as a function of
normalized threshold v0/σ and higher–level value n in the limiting case of
the small cross–correlation coefficient.
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fulfilled when the coherence factor ηc takes the maximum. In the limiting case
of the small cross–correlation coeficient | rxy[0] |� 1, which is common in
radio interferometry, we can calculate the coherence factor ηc using equation
(128) with explicit forms for the functions E and Φ given in equations (106)
and (111).

Figure 27 shows the coherece factor as a function of the two parameters, v0

normalized by the analog dispersion σ, and n, in the small cross–correlation
coefficient case.

As we see from the Figure, the maximum value of the coherence factor
ηc = 0.883 is obtained when n = 3.34 and v0 = 0.982 σ. However, from
a practical point of view, designing of digital circuitry for 2–bit hardware
correlators can be more easily implemented when n is an integer. Therefore,
n = 3, v0 = 0.996 σ with ηc = 0.881, and n = 4, v0 = 0.942 σ with ηc = 0.880,
are often used in existing VLBI 2–bit quantization systems. This is why we
adopted n = 3, v0 = 0.996 σ in Figures 24, 25, and 26.

Accordingly, in the limiting case of the small cross–correlation coefficient
| rxy[0] |� 1, the coherence factor, which takes into acount the effect of
clipping only, is given by

ηc
∼= 0.64, (130)

for the 1–bit quantization case, and

ηc
∼= 0.88, (131)

for the 2–bit quantization case.

1.1.30 Effect of Oversampling in S/N Ratio of Clipped Data

As we saw earlier, power spectra of clipped data show low–level but broad
skirt beyond band edges at ν = ±B of the original rectangular spectra of
corresponding analog data (Figures 22 and 25). Therefore, the Nyquist sam-
pling for the original analog data with 2B rate is no longer optimum for the
clipped data.

Sampling with a rate higher than the Nyquist rate for the analog data 2B,
which is a little incorrectly called the “oversampling”, improves the signal–
to–noise ratio of the clipped data. In this case, different sample points are no
longer independent any more, and we have to take into account contributions
of autocorrelations between different sample points, i.e. Rxx[m] and Ryy[m]
with m 6= 0, when we calculate the signal–to–noise ratio.

Let us consider that we sample our data with a rate which is β times as
fast as the Nyquist rate of the original band–limited analog data 2B. Then,
in the calculation of the dispersion of the digital correlator output R shown
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in equations (119) – (122), we must leave autocorrelation terms with non–
zero arguments. Specifically, the second term in the RHS of equation (120)
now must be

N
∑

i=1

N
∑

j 6=i

〈x̂[i] ŷ[i] x̂[j] ŷ[j]〉 ∼=
N
∑

i=1

N
∑

j 6=i

[〈x̂[i] ŷ[i]〉 〈x̂[j] ŷ[i]〉 + 〈x̂[i] x̂[j]〉 〈ŷ[i] ŷ[i]〉],

where the products of the autocorrelations in the second term in the RHS
could be well larger than the products of the cross–correlations in the first
term in this oversampling case. Thus the dispersion now becomes

σ2
R =

1

N 2





N
∑

i=1

〈x̂[i] ŷ[i] x̂[i] ŷ[i]〉 +
N
∑

i=1

N
∑

j 6=i

〈x̂[i] ŷ[i] x̂[j] ŷ[j]〉


− R2
x̂ŷ[0]

∼= 1

N Rx̂x̂[0] Rŷŷ[0] +
1

N 2

N
∑

i=1

N
∑

j 6=i

Rx̂x̂[i − j] Rŷŷ[i − j], (132)

where the second term in the RHS stands for the largest contribution of
the autocorrelations between different i–th and j–th sample points. Since
number of combinations of i and j having the same diffference k = i − j
is N− | k |, and autocorrelations are likely to be large enough for small
| k |� N only, we have

σ2
R
∼= 1

N Rx̂x̂[0] Rŷŷ[0] +
2

N 2

N−1
∑

k=1

(N − k)Rx̂x̂[k] Rŷŷ[k]

∼= 1

N Rx̂x̂[0] Rŷŷ[0] (1 + 2
∞
∑

k=1

rx̂x̂[k] rŷŷ[k]). (133)

Thus, for a continuum spectrum source, the signal–to–noise ratio of the
digital correlator output of N = 2 β B τa oversampled data is approximately
given by

SNR =
〈R〉
σR

=
rx̂ŷ[0]

rxy[0]

√

TA1 TA2

TS1 TS2

√
2 β B τa

√

√

√

√1 + 2
∞
∑

k=1

rx̂x̂[k] rŷŷ[k]

. (134)

Therefore, the coherence factor in the case of the oversampling is given by

ηc =
SNR

SNRanalog
=

rx̂ŷ[0]

rxy[0]

√
β

√

√

√

√1 + 2
∞
∑

k=1

rx̂x̂[k] rŷŷ[k]

. (135)
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We can estimate this factor, using equations (95) and (114) which describe
correlation coefficients of the clipped data rx̂x̂[k] and rŷŷ[k] as functions of
analog correlation coefficients rxx[k] and ryy[k], which we denote as rx̂x̂[k] =
fcl(rxx[k]) and rŷŷ[k] = fcl(ryy[k]). Here fcl is the clipping function which is
given in equation (95) and equation (114) for the 1–bit and 2–bit quatization
cases, respectively.

When the original analog data have rectangular baseband spectra with
bandwidth B, as we have assumed in the present discussion, the analog
correlation coefficients rxx(τ) and ryy(τ) have sinc function forms:

rxx(τ) = ryy(τ) =
sin(2π B τ)

2π B τ
,

as given in equation (46). Therefore, correlation coefficients of their time
samples x[k] and y[k] with the sampling interval Ts = 1/(2 B β) are given by

rxx[k] = ryy[k] = rxx(k Ts) = ryy(k Ts) =
sin

(

π k
β

)

π k
β

. (136)
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Figure 28: Coherence factor ηc for the analog (+), 2–bit quantized (×), and
1–bit quantized (∗) data as functions of the oversampling ratio β.

Thus, the signal–to–noise ratio and the coherence factor of the oversam-
pled clipped data is given by

SNR = ηc

√

TA1 TA2

TS1 TS2

√

2 B τa, (137)
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ηc =
rx̂ŷ[0]

rxy[0]

√
β

√

√

√

√

√1 + 2
∞
∑

k=1

f 2
cl





sin
(

π k
β

)

π k
β





. (138)

Figure 28 shows the coherence factor ηc for the analog, 2–bit quantized,
and 1–bit quantized data as functions of the oversampling ratio β, calculated
by means of equation (138). The coherence factor of the clipped data im-
proves gradually with increasing β, approaching to some constant values. On
the other hand, the coherence factor of the analog data is always 1, irrespec-
tive of the oversampling ratio β, in accordance with the sampling theorem.

In a particular case of the “double–speed sampling” β = 2, we have ηc =
0.744 for the 1–bit quantized data, and ηc = 0.930 for the 2–bit quantized
data.

1.1.31 Coherence Factor and Sensitivity with Given Bit Rate

Coherence factor ηc with different clipping and oversampling is summarized
in Table 2. It is obvious that the coherence factor increases as we increase

Number of Number of coherence factor ηc

bits Nb quantization levels β = 1 β = 2

1 2 0.64 0.74

2 4 0.88 0.93

Table 2: Relationship of coherence factor ηc with number of bits Nb and
oversampling ratio β.

the number of bits Nb and the oversampling ratio β.
However, actual observations are usually limited by maximum bit–rate

νb of data streams allowed by correlators or recorders. If the maximum bit–
rate νb is fixed, the maximum permissible sampling rate, which is β times as
large as the Nyquist rate 2B with the analog bandwidth B, is νb/Nb = 2 β B.
Therefore, the maximum allowable bandwidth is limited by the bit–rate as
B = νb/(2 β Nb). Hence, in view of equation (137), the maximum signal–
to–noise ratio, i.e. the sensitivity of the interferometric observation, for a
continuum spectrum source, is proportional to

SNR ∝ ηc

√
B ∝ ηc√

βNb

. (139)
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Number of Number of ηc/
√

β Nb

bits Nb quantization levels β = 1 β = 2

1 2 0.64 0.52

2 4 0.62 0.47

Table 3: Factor ηc/
√

β Nb, which determines the signal–to–noise ratio, esti-
mated for clipped and oversampled data with a fixed bit–rate.

Table 3 shows the factor ηc/
√

β Nb, which determines the signal–to–noise
ratio for the continuum spectrum source. When the bit–rate is given, the
sensitivity turns out to be largest in the simplest case of the 1–bit quantiza-
tion (Nb = 1) with the Nyquist sampling (β = 1)! This is the reason why
many VLBI observations still use the 1–bit quantization scheme with the
Nyquist sampling.

However, if we observe a line spectrum source, such as an astronomical
maser source, the frequency range containing the signal from the radio source
is confined within a limited spectral profile of the source where we often see
many narrow lines. Thus, in order to estimate the signal–to–noise ratio of
a spectral line, we must replace in equation (137) the bandwidth B of our
receiving system by the width of the spectral line. The line width is intrincic
to the radio source and constant irrespective of system–dependent parame-
ters, such as the number of bits Nb, or the oversampling ratio β. Therefore,
the larger the coherence factor ηc, the higher is the sensitivity in this case.
Consequently, modern VLBI systems tend to adopt the 2–bit quantization
scheme for better performance in line–spectrum–source observations. Note
also that the 2–bit quantization scheme (Nb = 2) with the Nyquist sampling
(β = 1) offers almost the same sensitivity as the 1–bit quantization scheme
with the Nyquist sampling, i.e. 0.62 against 0.64, for a continuum source,
as evident from Table 3. Figure 29 shows an example of the maser source
spectra derived from 2–bit quantized data.
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Figure 29: Spectra of the water maser source Cep A in an active region of
star formation derived from 2–bit quantized data. Upper panel shows total–
power spectrum with Mizusawa 20m antenna, and lower panel shows phase
and amplitude of cross–power spectrum with Mizusawa–Ogasawara baseline
of the VERA. Profiles of the two spectra are fairly different which indicate
effects of partial resolution of maser features in the VLBI baseline. Note
that amplitude scales are different in the two panels. (T. Hirota, private
communication in 2005.)
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1.2 Frequency Standard

1.2.1 VLBI Requires “Absolute” Frequency Stability

Multiplier Integrator

Multiplier Integrator

Tape recorder

analog digital

instrumental delay

correlator

correlator

Connected Interferometer

VLBI

RF IF ν ν - ν0

Figure 30: Connected–Element Interferometer vs. VLBI system.

Development of the highly stable frequency standard was indispensable
for realization of VLBI.

In the case of the connected–element interferometer, a common frequency
standard is used to generate local oscillator (LO) reference signals for fre-
quency conversion in all antennas (see upper panel of Figure 30). Therefore,
any phase noise, due to instability in the frequency standard, is common in
the signals from all antennas. Such common phase noise from any given an-
tenna is always compensated by the same phase noise from another antenna,
in the correlation processing.

In fact, let us assume that a signal from a radio source, which we assume
to be point–like for simplicity, received by antenna A is:

vA(t) ∝ sin[ωt − φ(t)],

and the same signal received by antenna B is:

vB(T ) ∝ sin[ω(t − τg) − φ(t)],
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where ω is a frequency of the radio signal, τg is the geometric delay between
the two antennas, and φ(t) is the common phase noise due to the frequency
standard.

After multiplication of these signals, we have

vA(t) vB(t) ∝ 1

2
{cos(ωτg) − cos[2 ωt − ωτg − 2 φ(t)]},

and after integration (averaging), we have

〈vA(t) vB(t)〉 ∝ 1

2
cos(ωτg), (140)

since rapidly oscillating second term with frequency 2 ω is averaged out.
Thus, no effect of the phase noise remains in the correlator output! Con-

sequently, correlation results in connected–element interferometers
are almost unaffected by the instability of the frequency standard.
Then, we readily obtain the almost pure fringe pattern ∝ cos(ωτg) in the
crorrelation results as shown in equation (140), as far as we perform suffi-
ciently long integration to suppress the thermal noise occuring in receiving
systems and in the environment, and achieve high enough signal–to–noise ra-
tio. This is why very high stability of frequency standards is not necessarily
required in connected–element interferometers.

How about VLBI, then?
Each antenna in VLBI uses its own independent frequency standard to

generate the LO reference signal (see lower panel of Figure 30).
Then, a signal from a point–like radio source received by antenna A is

given by
vA(t) ∝ sin[ωt − φA(t)],

and the same signal received by antenna B is:

vB(t) ∝ sin[ω(t − τg) − φB(t)],

where φA(t) and φB(t) are phase noises in independent frequency standards.
After multiplication, we have

vA(t) vB(t) ∝ 1

2
{cos[ωτg − φA(t) + φB(t)] − cos[2 ωt − ωτg − φA(t) − φB(t)]},

and after integration (averaging),

〈vA(t) vB(t)〉 ∝ 1

2
cos[ωτg − φA(t) + φB(t)]. (141)
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Therefore, no compensation of the phase noises is expected in the correlator
output of VLBI. In other words, correlation results in VLBI are always
directly affected by the instability of the frequency standards!

The noise in the fringe phase (the argument of the sinusoidal fringe pat-
tern in equation (141)) gives rise to two difficulties in VLBI.

First, the fringe phase, which is the important observable in radio inter-
ferometry, is contaminated by the phase noise.

Second, the phase noise severely limits the sensitivity of VLBI. Indeed, it
becomes impossible for us to completely stop the oscillation of the sinusoidal
fringe pattern if the phase noise varies in time, even when we ideally compen-
sate the geometric delay τg by applying accurate enough delay tracking and
fringe stopping. Then, if we further integrate (time–average) the correlator
output, hoping to get higher signal–to–noise ratio, the phase–noise–induced
oscillation of the fringe pattern results in smaller amplitude of the averaged
signal. The thermal noise contribution in the correlator output must be
surely suppressed by the integration, but the averaged signal itself could be
reduced even more rapidly due to the oscillation. Depending on the ratio
between the integration time and the timescale of the oscillation, the inte-
gration may not improve the signal–to–noise ratio at all, but even degrade
it. Such an effect is called the “coherence loss”. Therefore, the integration
time must be short enough not to cause large coherence loss, but this implies
that the signal–to–noise ratio must be limited by the short integration time.

This is why we need “absolute” stability of frequency standards in VLBI,
in order to ease these difficulties.

Of cource, not only the noise due to the frequency standards, but any
other phase noise, due for example to the propagation delay through the
turbulent atmosphere, causes similar difficulties, as we will see later.

Now we would like to discuss the way to quantitatively describe the fre-
quency stability, and to estimate effects of the incomplete stability.

1.2.2 How to Describe Frequency Stability?

Let us consider a reference signal v(t) which is expected to have a form in
an ideal case:

v(t) = v0 cos(ω0 t), (142)

with a nominal frequency ω0. In actuality, however, any real reference signal
has a phase noise φ(t), and therefore has a form:

v(t) = v0 cos(ω0 t + φ(t)). (143)
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In this actual case, instantaneous frequency ωa(t) will be

ωa(t) = ω0 +
dφ(t)

dt
. (144)

We then introduce a concept of the “fractional frequency deviation
(FFD)” y(t), which is defined by

y(t) =
δω(t)

ω0
=

ωa(t) − ω0

ω0
=

1

ω0

dφ(t)

dt
, (145)

as a measure of the frequency stability.
Let us assume that φ(t) and y(t) are stationary random processes. Then,

their autocorrelations are functions of the time difference τ :

Rφφ(τ) = 〈φ(t + τ) φ(t)〉, and Ryy(τ) = 〈y(t + τ) y(t)〉, (146)

and their power spectra are given by Fourier transform relations:

Sφφ(ω) =

∞
∫

−∞
Rφφ(τ) e−iωτ dτ, Rφφ(τ) =

1

2π

∞
∫

−∞
Sφφ(ω) eiωτ dω,

Syy(ω) =

∞
∫

−∞
Ryy(τ) e−iωτ dτ, Ryy(τ) =

1

2π

∞
∫

−∞
Syy(ω) eiωτ dω. (147)

In view of equation (145), the autocorrelations of y(t) and φ(t) are mu-
tually related by

Ryy(t, t
′) = 〈y(t) y(t′)〉 =

1

ω2
0

〈

dφ(t)

dt

dφ(t′)

dt′

〉

=
1

ω2
0

∂2

∂t ∂t′
Rφφ(t, t

′). (148)

In our case of the stationary random processes, this is reduced to

Ryy(τ) = − 1

ω2
0

d2

dτ 2
Rφφ(τ), (149)

where τ = t − t′.
From equations (147) and (149), we have

Ryy(τ) = − 1

ω2
0

d2

dτ 2

1

2π

∞
∫

−∞
Sφφ(ω) eiωτ dω =

1

2π

∞
∫

−∞

ω2

ω2
0

Sφφ(ω) eiωτ dω,

and, therefore, the power spectra of y(t) and φ(t) are related to each other
by a relation:

Syy(ω) =
ω2

ω2
0

Sφφ(ω). (150)
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Let us make a comment here about conventions which have been tradi-
tionally used for describing power spectra in frequency stability discussions.

Since y(t) and φ(t) are real functions of time, the autocorrelation Rφφ(τ)
and Ryy(τ), and power spectra Sφφ(ω), Syy(ω) are all real and even functions
of τ and ω. Using this property, and using frequency ν instead of angular
frequency ω = 2π ν, we can describe the power spectra in the “single–sided
forms” Sφφ(ν) and Syy(ν), which have been widely used in the frequency
stability discussions:

Sφφ(ν) = 4

∞
∫

0

Rφφ(τ) cos(2π ν τ) dτ, Rφφ(τ) =

∞
∫

0

Sφφ(ν) cos(2π ν τ) dν,

Syy(ν) = 4

∞
∫

0

Ryy(τ) cos(2π ν τ) dτ, Ryy(τ) =

∞
∫

0

Syy(ν) cos(2π ν τ) dν.

(151)

These single–sided spectra Sφφ(ν) and Syy(ν) are related to our double–sided
power spectra Sφφ(ω) and Syy(ω) by:

Sφφ(ν) = 2 Sφφ(2πν), and Syy(ν) = 2 Syy(2πν), (152)

for the positive frequency range ν ≥ 0. Therefore, their mutual relationship
has been often given by:

Syy(ν) =
ν2

ν2
0

Sφφ(ν), (153)

instead of equation (150), where ν0 =
ω0

2π
.

However, we will continue to use our double–sided power spectrum forms
in equations (147), following our previous discussions.

1.2.3 Types of Phase and Frequency Noises

Measurements have shown that noises in the frequency stability are classi-
fied into following types according to the power–law index α of the power
spectrum of the FFD Syy(ω) = Hα ωα with roughly constant coefficients Hα.
Each noise type, or power–law component of the FFD spectrum, has its own
characteristic name listed in Table 4.

An oscillator in a frequency standard often shows a combination of all
power–law components of Table 4 in various frequency ranges, as shown
schematically in Figure 31.
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α Name of Noise Type Syy(ω) Sφφ(ω)

2 White phase H2 ω2 ω2
0 H2

1 Flicker phase H1 ω1 ω2
0 H1 ω−1

0 White frequency H0 ω2
0 H0 ω−2

-1 Flicker frequency H−1 ω−1 ω2
0 H−1 ω−3

-2 Random walk of frequency H−2 ω−2 ω2
0 H−2 ω−4

Table 4: Power–law types of phase and frequency noise spectra.

α=2

α=1

α=0

α=−1

α=−2

Figure 31: A schematic spectrum of the FFD, y(t), of an oscillator showing
all power–law components in Table 4 in various frequency ranges. Horizontal
and vertical axes show the angular frequency ω and the power spectrum
Syy(ω), respectively, in log–scales.
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1.2.4 Time Domain Measurements

It has traditionally been easier to make measurements in the time domain,
than in the frequency domain. Hence, frequency stability characteristics are
usually given in terms of the time domain measurements.

Suppose that we have N phase values: φ(t1), φ(t2), · · · , φ(tk), · · · , φ(tN ),
measured at equally spaced time points: t1, t2, · · · , tk, · · · , tN , with time
interval T , where T = tk+1 − tk for any k.

Then, using these phase values measured in the time domain, we form a
discrete time series of the “mean fractional frequency deviation” ȳ[k]
which is defined by

ȳ[k] =
φ(tk+1) − φ(tk)

ω0 T
=

1

ω0 T

tk+1
∫

tk

dφ(t′)

dt′
dt′ =

1

T

tk+1
∫

tk

y(t′)dt′, (154)

and can be described also as

ȳ[k] =
1

T

t+T
2

∫

t−T
2

y(t′)dt′, (155)

where t = tk + T /2. This is a running mean of the FFD y(t) at the point
t = tk + T /2 over the time interval T . Thus, ȳ[k] for any k is given by a
linear system of y(t):

ȳ[k] = y(t) ∗ a(t) =

∞
∫

−∞
y(t − t′) a(t′) dt′, (156)

with an impulse response a(t):

a(t) =











1
T if − T

2
< t ≤ T

2
,

0 otherwise,
(157)

at t = tk + T /2, similarly to what we saw in Chapter 3.

1.2.5 “True Variance” and “Allan Variance” of Fractional Fre-
quency Deviation

Using the mean fractional frequency deviation ȳ[k], which is obtained by
averaging the FFD y(t) for the time interval T , as shown in equation (155),

82



we introduce the “true variance of the fractional frequency deviation
(TVAR)” as a function of the time interval T :

I2(T ) = 〈ȳ2[k]〉, (158)

where, we assumed zero–mean of the mean FFD ȳ[k]:

〈ȳ[k]〉 = 0.

In view of the ergodicity, we can estimate the TVAR I2(T ) by means of a
time–average Σt of N − 1 values of the squared mean FFD ȳ2[k]:

Σt =
1

N − 1

N−1
∑

k=1

ȳ2[k]. (159)

Generally speaking, there seems no difficulty in calculating the time–
average Σt, and, therefore, this estimated TVAR appears a good measure
of the frequency stability. In actuality, however, Σt, as given in equation
(159), diverges for some important types of frequency noises, and therefore
cannot be used for characterizing the frequency stability as a whole. The
assumption of the stationary random process, or the ergodicity, is not likely
to be strictly fulfilled in these diverging cases.

In order to overcome this difficulty, David W. Allan proposed to take a
difference of successive two samples:

∆ȳ[k] = ȳ[k + 1] − ȳ[k], (160)

and calculate an average of the squared difference (∆ȳ[k])2 divided by two:

Σa =
1

2 (N − 2)

N−2
∑

k=1

(∆ȳ[k])2, (161)

(Allan, 1966). In view of equation (154), the two sample difference ∆ȳ[k] of
the mean FFD is easily derived from the measured phase noise φ[k] by

∆ȳ[k] =
φ(tk+2) − 2 φ(tk+1) + φ(tk)

ω0 T
. (162)

The mean square sum Σa gives an estimation of the “two–sample vari-
ance” or “Allan variance (AVAR)”:

σ2
y(T ) =

〈(∆ȳ[k])2〉
2

, (163)
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τ

τ

y[k]

∆y[k]=y[k+1]-y[k]

Figure 32: Mean square sum of the two–sample difference of the mean FFD
(lower panel) has a better chance to converge than that of the mean FFD
itself (upper panel), even when the mean FFD shows a diverging long–time–
scale behaviour.

as a function of the time interval T .
Estimation of the AVAR with Σa has a better chance to converge than

that of the TVAR with Σt, as schematically illustrated in Figure 32. There-
fore, the estimated AVAR is widely accepted as a good measure of the fre-
quency stability.

In view of equation (154), we can describe the two–sample difference of
the mean FFD ∆ȳ[k] through time integrations of the FFD y(t):

∆ȳ[k] = ȳ[k + 1] − ȳ[k] =
1

T











tk+2
∫

tk+1

y(t′) dt′ −
tk+1
∫

tk

y(t′) dt′











=
1

T











t+T
∫

t

y(t′) dt′ −
t
∫

t−T
y(t′) dt′











, (164)

where t = tk+1. This is nothing but a linear system of the FFD y(t):

∆ȳ[k] = y(t) ∗ b(t) =

∞
∫

−∞
y(t − t′) b(t′) dt′, (165)

with an impulse response:

b(t) =























1
T if − T < t ≤ 0,

− 1
T if 0 < t ≤ T ,

0 otherwise,

(166)
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at time t = tk+1.

1.2.6 True Variance and Allan Variance through Power Spectrum
of Fractional Frequency Deviation

Equations (156) and (165) describe the discrete–time series ȳ[k] (the meam
FFD) and ∆ȳ[k] (the two–sample difference of the mean FFD) through the
linear systems with impulse responses a(t) and b(t) at times t = tk + T /2
and t = tk+1, respectively. We can formally extend these linear systems to
yield continuous–time functions ȳ(t) and ∆ȳ(t):

ȳ(t) = y(t) ∗ a(t) =

∞
∫

−∞
y(t − t′) a(t′) dt′,

∆ȳ(t) = y(t) ∗ b(t) =

∞
∫

−∞
y(t − t′) b(t′) dt′, (167)

at arbitrary time t, and introduce their autocorrelations

Rȳȳ(τ) = 〈ȳ(t + τ) ȳ(t)〉,
R∆ȳ∆ȳ(τ) = 〈∆ȳ(t + τ) ∆ȳ(t)〉, (168)

and power spectra Sȳȳ(ω) and S∆ȳ∆ȳ(ω). Of course, ȳ(t) takes the particular
value ȳ[k] at t = tk + T /2, and ∆ȳ(t) takes the particular value of ∆ȳ[k] at
t = tk+1, i.e.

ȳ(t) = ȳ[k] at t = tk +
T
2

,

∆ȳ(t) = ∆ȳ[k] at t = tk+1. (169)

Then, we can describe the TVAR, I2(T ) , through the autocorrelation
Rȳȳ(τ), and then the power spectrum Sȳȳ(ω):

I2(T ) = 〈(ȳ[k])2〉 = Rȳȳ(0) =
1

2π

∞
∫

−∞
Sȳȳ(ω) dω. (170)

Similarly, for the AVAR, σ2
y(T ) , we have

σ2
y(T ) =

〈(∆ȳ[k])2〉
2

=
R∆ȳ∆ȳ(0)

2
=

1

4π

∞
∫

−∞
S∆ȳ∆ȳ(ω) dω. (171)

Since the functions ȳ(t) and ∆ȳ(t) are related to the FFD y(t) through
the linear system equations (167), we can describe the power spectra Sȳȳ(ω)
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and S∆ȳ∆ȳ(ω) through the power spectrum Syy(ω) of the FFD y(t), which
we introduced in equation (147). For this purpose, let us introduce system
functions A(ω) and B(ω) of the impulse responses a(t) and b(t), respectively:

A(ω) =

∞
∫

−∞
a(t) e−iωt dt =

1

T

T
2
∫

−T
2

e−iωt dt =
sin(ωT

2
)

(ωT
2

)
,

B(ω) =

∞
∫

−∞
b(t) e−iωt dt =

1

T











0
∫

−T
e−iωt dt −

T
∫

0

e−iωt dt











= 2 i
sin2(ωT

2
)

(ωT
2

)
.

(172)

From general properties of linear systems, we have

Sȳȳ(ω) = Syy(ω) | A(ω) |2,

and
S∆ȳ∆ȳ(ω) = Syy(ω) | B(ω) |2 .

Therefore, equations (170) and (171) are reduced to
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Figure 33: Squared system functions for the TVAR, | A(ω) |2, (left) and
the AVAR, | B(ω) |2, (right). Horizontal axes show the product ν T of the
frequency and the time interval.

I2(T ) =
1

2π

∞
∫

−∞
Syy(ω)

sin2(ωT
2

)

(ωT
2

)2
dω, (173)

σ2
y(T ) =

1

2π

∞
∫

−∞
Syy(ω) 2

sin4(ωT
2

)

(ωT
2

)2
dω. (174)
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These are the equations which relate the TVAR and the AVAR to the power
spectrum Syy(ω) of the FFD y(t).

Figure 33 shows squared system functions | A(ω) |2 and | B(ω) |2 for the
TVAR and the AVAR, respectively. It is evident from this Figure that the
low frequency noise is effectively suppressed in the AVAR.

1.2.7 Time–Interval Dependence of Allan Variance

We can calculate dependence of the TVAR and the AVAR on the time interval
T according to equations (173) and (174) for each power–law index α of the
FFD spectrum Syy(ω) ∝ ωα given in Table 4. Results are shown in Table 5,
where ωh in the white phase (α = 2) and the flicker phase (α = 1) components
is a cut–off frequency at the high frequency side of the FFD spectrum.

Noise Type Syy(ω) Sφφ(ω) σ2
y(T ) I2(T )

White phase H2 ω2 ω2
0 H2

3H2ωh

πT 2
2H2ωh

πT 2

Flicker phase H1 ω1 ω2
0 H1 ω−1 3H1 ln(ωhT )

πT 2 —

White frequency H0 ω2
0 H0 ω−2 H0

T
H0

T

Flicker frequency H−1 ω−1 ω2
0 H−1 ω−3 (2 ln 2) H−1

π
—

Random walk of frequency H−2 ω−2 ω2
0 H−2 ω−4 T H−2

3
—

Table 5: Time–interval dependence of the AVAR, σ2
y(T ), and the TVAR,

I2(T ), for each power–law component of the FFD spectrum. ωh is a cut–off
frequency at the high frequency side of a power–law spectrum Syy(ω).

Figure 34 schematically shows the time–interval dependence of the “Allan
standard deviation (ASD)”, σy(T ), which is defined as the square root of the
AVAR. It is clear from this Figure that, having measured ASD as a function
of the time interval between samples T , we can readily distinguish noise
types, except for the case of the white phase and the flicker phase. This
demonstrates the real usefulness of the ASD (or the AVAR) as a measure of
the frequency stability.

Figure 35 shows characteristic performance of various frequency standards
in terms of the ASD versus the time interval. ASD’s of frequency standards
are approximated by different noise types in different time–interval ranges.
The active hydrogen maser, which shows ASD ≤ 10−15 in its flicker frequency
regime, exhibits the highest frequency stability in the time–interval range of
1,000 to 10,000 seconds.
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Figure 34: A shematic view of the time–interval T dependence of the Allan
standard deviation σy(T ) in log–scales. Each noise type shows its own gra-
dient in this diagram, though lines of the white phase and the flicker phase
are hardly distinguished by the difference of their gradients.

Figure 35: Performance of various frequency standards in terms of the ASD—
the time interval between samples. QZ: Quartz, RB: Rubidium, CS: Cesium,
HM: Active Hydrogen Maser. (Figure courtesy of HEWLETT PACKARD,
Application Note 1289).
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1.2.8 True Variance and Allan Variance through Autocorrelation
of Phase Noise

We can describe the TVAR and the AVAR also through the autocorrelation
Rφφ(T ) of the phase noise φ(t). In fact, for the TVAR, equations (154) and
(158) yield

I2(T ) = 〈ȳ2[k]〉 =
〈[φ(tk + T ) − φ(tk)]

2〉
(ω0 T )2

=
2 [Rφφ(0) − Rφφ(T )]

(ω0 T )2
. (175)

Also, for the AVAR, equations (162) and (163) lead to

σ2
y(T ) =

〈(∆ȳ[k])2〉
2

=
〈[φ(tk + 2T ) − 2 φ(tk + T ) + φ(tk)]

2〉
2 (ω0 T )2

=
3 Rφφ(0) − 4 Rφφ(T ) + Rφφ(2 T )

(ω0 T )2
. (176)

Now, from equation (175), we have,

I2(T ) − I2(2T ) =
2 [R(0) − R(T )] − 1

2
[R(0) − R(2 T )]

(ω0 T )2

=
3 Rφφ(0) − 4 Rφφ(T ) + Rφφ(2 T )

2 (ω0 T )2
. (177)

Therefore, in cases when the TVAR I2(T ) does not diverge, we have the
following relationship between the AVAR and the TVAR:

σ2
y(T ) = 2 [I2(T ) − I2(2T )]. (178)

1.2.9 Coherence Function

As we saw earlier, the phase noise in the fringe phase causes the serious
problem, the coherence loss, for the sensitivity of VLBI.

The coherence loss due to the phase noise φ(t), after integrating the corre-
lator output for duration T , can be estimated by introducing the “coherence
function” (Rogers and Moran, 1981), which is defined by

C(T ) =
∣

∣

∣

1

T

T
∫

0

eiφ(t) dt
∣

∣

∣. (179)

Magnitude of the squared coherence function is represented by its dispersion:

〈C2(T )〉 =
1

T 2

T
∫

0

T
∫

0

〈ei[φ(t)−φ(t′)]〉 dt dt′. (180)
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Now, if we assume the Gaussian distribution of the phase noise difference
Φ = φ(t) − φ(t′):

f(Φ) =
1

σ
√

2π
e−

Φ2

2σ2 , (181)

where
σ2 = 〈Φ2〉 = 〈[φ(t) − φ(t′)]2〉,

then, using the formula

∞
∫

−∞
e−x2−iax dx =

√
π e−

a2

4 ,

we obtain

〈eiΦ〉 =

∞
∫

−∞
f(Φ) eiΦ dΦ = e−

σ2

2 = e−
〈Φ2〉

2 .

Hence, we reduce equation (180) to

〈C2(T )〉 =
1

T 2

T
∫

0

T
∫

0

e−
〈[φ(t)−φ(t′)]2〉

2 dt dt′ =
1

T 2

T
∫

0

T
∫

0

e−
D(t, t′)

2 dt dt′, (182)

where D(t, t′) is the so–called “temporal structure function” defined by

D(t, t′) = 〈[φ(t) − φ(t′)]2〉. (183)

Under the assumption of the stationary random phase noise, we have

D(t, t′) = D(τ),

with τ = t − t′. Then we can reduce the double integral in equation (182)
to a single integral. In fact, noting that dz = 1√

2
dτ and L =

√
2 (T − τ) in

Figure 36, we obtain

〈C2(T )〉 =
2

T 2

T
∫

0

(T − τ) e−
D(τ)

2 dτ =
2

T

T
∫

0

(

1 − τ

T

)

e−
D(τ)

2 dτ. (184)

According to equation (154), the mean FFD ȳ[k] with the sample interval
τ is

ȳ[k] =
φ(tk + τ) − φ(tk)

ω0 τ
.

Therefore, we can describe the structure function D(τ) through the TVAR
I2(τ) as

D(τ) = ω2
0 τ 2 〈ȳ2〉 = ω2

0 τ 2 I2(τ). (185)
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Figure 36: Geometry of integration in equation (182).

This enable us to describe the dispersion of the coherence function through
the TVAR:

〈C2(T )〉 =
2

T

T
∫

0

(

1 − τ

T

)

e−
ω2
0 τ2 I2(τ)

2 dτ

=
2

T

T
∫

0

(

1 − τ

T

)

e
−ω2

0 τ2

4π

∞
∫

−∞

Syy(ω)
sin2( ωτ

2
)

( ωτ
2

)2
dω

dτ. (186)

Thus, when a functional form of the TVAR I2(τ) is given, we can calcu-
late the dispersion of the coherence function 〈C2(T )〉 . Then, we can estimate
the “coherence time τc ”, i.e. the interval during which we can more or
less coherently integrate our signal. As the criterion for the coherence time
τc, we usually adopt the time interval which gives 〈C2(τc)〉 ∼ 0.85.

1.2.10 Approximate Estimation of Coherence Time

Precise estimation of the coherence time using equation (186) is sometimes
impractical when the estimation of the TVAR with equation (159) diverses.

For practical purposes, the coherence time is usually estimated by a sim-
pler way.

Phase noise accumulated during a time T is approximately given by '
ω0σyT , where σy is “some standard deviation” of the FFD, for which we
usually adopt the ASD.

It is obvious that we will not obtain any meaningful correlation result if
the phase noise varies more than 2π, during an integration time T . It is the
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usual practice to require that the accumulated phase noise must not exceed
1 radian:

ω0σy(T )T ≤ 1 radian. (187)

(Note that σy is, in general, a function of the time interval T .) Thus, the
coherence time τc is estimated as a time which satisfies

ω0σy(τc)τc ' 1. (188)

If we observe at ν = 8 GHz, and require that τc = 1000 sec, say, we need
a frequency stability better than

σy(1000 sec) ' 1

2π × 8 × 109 × 103
' 2 × 10−14,

which is sometimes described as the “stability of a clock which would
deviate by 1 sec in 5 × 1013 sec, or 1.6 million years!”

The Active Hydrogen Maser Frequency Standard, which has the fre-
quency stability of 10−16 < σy < 10−14 at time scales around 1000 sec (see
Figure 35), fulfilled the requirement, and is widely used in the world VLBI
observations.

1.2.11 Estimation of Time–Averaged Phase Noise

In some applications of VLBI obserrvation, for example in VLBI astrometry,
it is meaningful to theoretically estimate the phase noise expected after time–
averaging of the correlator output for a duration of time T .

If we have a time series of measured fringe phase with high enough signal–
to–noise ratio, the time–averaged phase noise φ̄ is given by a simple model:

φ̄ =
1

T

T
∫

0

φ(t) dt, (189)

where φ(t) is the phase noise at time t. This model is good enough for the
case of the “vector averaging” of the correlator output, such as shown in
equation (179) for the coherence function, as long as the phase noise is kept
well smaller than 1 radian. In fact, if φ(t) � 1, we have

1

T

T
∫

0

eiφ(t) dt ∼= 1

T

T
∫

0

(1 + i φ(t)) dt ∼= eiφ̄.

Now, we will derive formulae for the dispersion of the residual phase noise
from its time average:

∆φ = φ(t) − φ̄ = φ(t) − 1

T

∫ T

0
φ(t′)dt′, (190)
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and that of the time-averaged phase itself, given by equation (189).
The dispersions are

σ2
∆φ(T )=

〈

1

T

∫ T

0

[

φ(t) − 1

T

∫ T

0
φ(t′)dt′

]2

dt
〉

=
2

T 2

∫ T

0
(T − τ)[Rφφ(0) − Rφφ(τ)]dτ =

1

T 2

∫ T

0
(T − τ) ω2

0 τ 2 I2(τ)dτ.

(191)

σ2
φ̄(T )=

〈

[

1

T

∫ T

0
φ(t)dt

]2 〉

=
2

T 2

∫ T

0
(T − τ)Rφφ(τ)dτ. (192)

Therefore, we can calculate these dispersions if we know the TVAR I2(τ)
and the autocorrelation of the phase noise Rφφ(τ). Note that equation (191)
describes the accumulated phase noise around its time average. In particular,
equation (186) can be reduced to

〈C2(T )〉 =
2

T

T
∫

0

(

1 − τ

T

)

e−
ω2
0

τ2 I2(τ)

2 dτ

∼= 2

T

T
∫

0

(

1 − τ

T

)

[1 − ω2
0 τ 2 I2(τ)

2
]dτ = 1 − σ2

∆φ(T ), (193)

as long as ω2
0 τ 2 I2(τ) / 2 � 1.

In the simplest case of the white phase noise, we have

I2(τ) =
2 H2 ωh

π τ 2
, and σ2

y(τ) =
3 H2 ωh

π τ 2
, (194)

for the TVAR and the AVAR, and

Sφφ(ω) = ω2
0 H2, and Rφφ(τ) =

1

2π

∞
∫

−∞
Sφφ(ω) eiωτ dω = ω2

0 H2 δ(τ),

(195)
for the power spectrum and the autocorrelation of the phase noise. Then,
equations (191) and (192) yield

σ2
∆φ(T ) =

1

T 2

∫ T

0
(T − τ) ω2

0 τ 2 I2(τ)dτ =
H2 ω2

0 ωh

π
, (196)

for the dispersion of the residual phase noise, and

σ2
φ̄(T ) =

2

T 2

∫ T

0
(T − τ)Rφφ(τ)dτ =

H2 ω2
0

T
, (197)
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for the dispersion of the time–averaged phase noise.
It is evident that, for the white phase noise, the dispersion of the residual

phase noise σ2
∆φ(T ) does not depend on the averaging time T . This dispersion

is readily estimated, if we have measured AVAR σ2
y(τ), from which we can

easily extract the coefficient H2 ωh.
On the other hand, the dispersion of the time–averaged phase noise σ2

φ̄(T )

decreases with increasing averaging time as ∝ 1/T , just like the thermal
noise. In this case, only H2 figures as the unknown coefficient which is not
directly available from the measured AVAR alone.

We can estimate the cut–off frequency ωh, and then H2, in the following
way. Suppose that actual measurements of the phase noise are performed
with a time interval τm. If we regard the measured phase noise value as
a kind of the running mean for the duration τm, the high frequency cut–off
should be ωh

∼= 1/τm. Then, we can estimate σ2
φ̄(T ), using this ωh and H2 ωh

derived from the measured AVAR.

1.3 Time Synchronization

In order to find the white fringe within the coherence interval, the clocks
of the element antennas must be synchronized with accuracy τsync, which
should be better than the coherence interval 2/B, where B is the recorded
bandwidth, as we saw in Chapter 3.

Therefore, even in the early days of VLBI observations, with the typical
bandwidth of B = 2 MHz, we needed high time–synchronization accuracy:

τsync < 1 µsec for B = 2MHz,

which was not easily available from time transfer systems at that time using
surface waves.

Nowadays, the requirement is much more severe since we use the observ-
ing bandwidth with B = 256 MHz or wider. Then, we need

τsync < 7.8 nsec(!) for B = 256MHz.

In actuality, multi–lag correlators, which we will discuss later, can signifi-
cantly ease this requirement. But, anyway, we need highly accurate time
synchronization better than 100 nsec.

Fortunately, now GPS (Global Positioning System) Satellites are capa-
ble of providing time synchronizations at a few tens nsec level. Therefore,
right now we do not have any essential problem in the time synchronization
technology.

Once VLBI fringe is successfully detected, VLBI itself serves as the best
time synchronization device, with 1 nsec level accuracy.

94



1.4 Recording System

Even in the very early stages, VLBI required a very high data rate and
capacity for the recording system. For example, if we wish to record digitized
data, with bandwidth B = 2 MHz, sampled at Nyquist rate (which equals
2B samples/sec) with 1 bit (or 2–level) quantization, for a time duration of
400 sec, we need a data recording rate of 4 Mbit/sec, and a data capacity of
at least 1.6 Gbit.

Nowadays, new recording sytems, such as the VERA system, allow 1 hour
recording at a 1 Gbit/sec rate, per volume of magnetic tape. Therefore, such
a tape records 3.6 Tbit of data.

Figure 37: VLBI systems (from Thompson, Moran, and Swenson, 2001).

Generations of “VLBI systems” were marked by the development of the
digital data recording technology, as shown in Figure 37.

The Communications Research Laboratory (CRL, now NICT: National
Institute of Information and Communications Technology) has developed the
Mark II–compatible K-1, the experimental real–time VLBI system K-2, the
Mark III–compatible K-3, and cassette–based K-4 systems, by its own efforts
(Takahashi, et al., 2000).

Figures 38, 39, 40 and 41 show the VLBA recorder, S2 recorder, K-4
recorder, and the tape handler for K-4 recorder. Figure 42 shows the S2,
K-4, and VLBA (Mark IV) tapes.
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Figure 38: VLBA recorder (MIT Haystack Observatory/NRAO, USA).
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Figure 39: S2 recorder (Center for Research in Earth and Space Technology,
Canada).

97



Figure 40: K-4 recorder (NICT/CRL, Japan).
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Figure 41: Automated tape handler for K-4 (NICT/CRL, Japan).
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Figure 42: Magnetic tapes used in VLBI: S2 (top left), K-4 (left), and
VLBA/Mark IV (right).
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2 Overview of the VLBI System

2.1 MK–3 As a Prototype of Modern VLBI Systems

Figure 43 shows a schematic view of the Mark III / K-3 VLBI system, often
called “MK–3”, which was initially developed by the MIT Haystack Obser-
vatory with sponsorship from NASA, and by the CRL (now NICT), in the
late 1970’s. Although this system has now been almost replaced by newer
systems, such as the Mark IV, Mark V, VLBA, K-4, K-5 and VSOP, many
important elements of these modern VLBI systems were implemented for the
first time in the MK–3 system, and have been further developed in the latest
systems. Therefore, we briefly describe here the basic components, and their
functions, of the MK–3 system.

S and X Low
Noise Amplifiers

Video Converter

Formatter

IF Frequency
  Distributer

Data Recorder

Local Oscillator

 P & D 
Ground
   Unit

H-Maser Frequency
        Standard

P & D Antenna
          Unit

Control
Computer

Antenna
Control
   Unit

Downconverter

VLBI Terminal

Control Building

Receiver Room
S X

Figure 43: A schematic view of the Mark III / K-3 VLBI system.

The MK–3 system was originally developed mainly for realizing high–
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precision VLBI geodesy, although the system has been extensively used for
astrophysical radio source imaging observations as well. In order to accu-
rately estimate the group delay, the system adopted a multi–frequency chan-
nel design, together with high–speed recording technology; these features
have been retained in most of the latest systems.

2.1.1 Dual–Frequency Reception

In geodetic applications, a VLBI antenna receives radio waves from distant
extragalactic sources usually at two frequencies simultaneously, in order to
correct the effects of frequency–dependent propagation delay in the iono-
sphere. The two frequencies, S–band (2 GHz) and X–band (8 GHz), are
most widely used in global geodetic VLBI observations. The RF frequency
bands in the MK–3 system typically covered 200 MHz for S–band (e.g., from
2120 to 2320 MHz), and 420 MHz for X–band (e.g., from 8180 to 8600 MHz).
Multi–frequency coaxial feed horns are widely used for dual–frequency recep-
tion. Other systems, including FSS (Frequency Selective Surfaces) and spiral
arrays (see, e.g., Figure 44), are also used.

Figure 44: S/X spiral–array feed system, developed by Hosei University,
Japan, is used for dual–frequency reception in VERA.

2.1.2 First Frequency Conversion

In the receiver room, usually built in the antenna structure, the RF signals
are amplified by the S–band and X–band low–noise amplifiers, and down-
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converted to, for example, 100 – 300 MHz (S–band) and 100 – 520 MHz
(X–band), respectively, with the local oscillator signals at frequencies of 2020
MHz (S–band) and 8080 MHz (X–band), which are generated from a refer-
ence signal provided by the Hydrogen Maser Frequency Standard.

2.1.3 Transmission to Control Building

Then, the IF signals are fed to a so–called MK–3 VLBI terminal rack in
a control building, via transmission cables which are usually laid in under-
ground ducts, in order to minimize phase fluctuations due to cable length
variations, induced by temperature changes.

2.1.4 Intermediate Frequency Distributer

ν

Makes  n identical copies.

Selects specified frequency ranges
and converts them to video bands.

IF signal from receiver.

IF Distributer

Video Converter

Digitizes, formats and adds time codes.

to VLBI Recorder

Formatter

Figure 45: Data flow in the MK–3 VLBI terminal.

In the VLBI terminal rack, the S–band and X–band IF signals are copied
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over to 6 (S–band) and 8 (X–band) identical signals, respectively, by the
so–called “Intermediate Frequency Distributer” unit (Figure 45).

2.1.5 Baseband Conversion

The 6 and 8 identical IF signals are then sent to 14 special units consisting of
frequency downconverters, called “Video Converters” (VC’s) (or “Baseband
Converters”, BBC’s) located in the same rack. Each Video Converter selects
a specified frequency range in the IF band, and downconverts this range into
a video band, typically from 0 to 2 MHz. For this purpose, a frequency syn-
thesizer, which is built in the Video Converter, generates an LO frequency
at the edge of the selected IF range, using a reference signal provided by the
Hydrogen Maser Frequency Standard. The Video Converter is equipped with
a sideband–rejection mixer, which is capable of converting both lower and
upper sidebands around the selected LO frequency, separately. Thus, in total
up to 28 (14 × 2 SB’s) baseband frequency channels are generated by the
14 Video Converters. Usually, of course, the baseband channels are selected
in such a way that they correspond to different RF frequency ranges. Table
6 and Figure 46 show an example of the LO frequency distribution used in
a recent geodetic VLBI observation. This apparently strange distribution of
the data among the baseband channels, which are to be subsequently digi-
tized and recorded, are spread over fairly wide ranges of the RF bands; This
is specifically designed for better estimation of the group delay observables
via a technique called “bandwidth synthesis”, which will be discussed later.

8200 8250 8300 8350 8400 8450 8500 8550 8600
RF frequency (MHz)

2220 2240 2260 2280 2300 2320 2340 2360
RF frequency (MHz)

Figure 46: Distributions of baseband channels within the RF frequency
ranges, in a sample geodetic VLBI observation, as used in Table 6. Top:
X–band, and bottom: S–band.
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Ch# band LO freequency (MHz) bandwidth (MHz)

1 X 8209.99 4.00

2 X 8219.99 4.00

3 X 8249.99 4.00

4 X 8309.99 4.00

5 X 8419.99 4.00

6 X 8499.99 4.00

7 X 8549.99 4.00

8 X 8569.99 4.00

9 S 2239.99 4.00

10 S 2244.99 4.00

11 S 2259.99 4.00

12 S 2289.99 4.00

13 S 2319.99 4.00

14 S 2329.99 4.00

15 S 2344.99 4.00

16 S 2354.99 4.00

Table 6: An example of the distribution of LO frequencies in baseband chan-
nels. Note that this example is taken from a recent geodetic VLBI observa-
tion, which uses the K-4 VLBI system. The K-4 is newer than the MK–3,
and has 16 Video Converters (therefore, 16 baseband channels), each with 4
MHz bandwidth.
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2.1.6 Formatter

The baseband signals from the 14 Video Converters (possibly containing
both USB and LSB channels) are then fed to 14 “Formatter” units in the
same rack, each of which converts the analog baseband signal into a digital
signal, using a high–speed sampler, with a one–bit (or two–level) quantization
scheme, and Nyquist sampling rate (i.e. 2BV C samples/sec, where BV C ≤ 2
MHz is the bandwidth of each video band channel). At the same time, the
Formatter periodically generates time mark codes, using the reference signal
and the clock pulse provided by the Hydrogen Maser Frequency Standard,
and inserts them into the digitized data. These time mark codes play basic
and important roles in the later digital correlation processing.

2.1.7 Data Recorder

Up to 28 channels of the digitized, formatted data are sent to a high–speed
data recording device, the Honeywell M–96 open–reel digital recorder, in the
case of the MK–3 system and its successors (see Figure 38). The formatted
multi–channel data are recorded in parallel tracks.

From the above discussion, we see, that the maximum recording rate in
the MK–3 system is given by:

1 bit/sample × 2 × 2 M sample/sec (Nyquist rate) ×
2 sidebands × 14 Video Converters = 112 Mbit/sec.

2.1.8 Phase and Delay Calibration

The 14 Video Converters (VC’s) add their own arbitrary initial phases to the
converted video band signals. It is necessary, for the accurate estimation of
the group delay, to calibrate the phase offsets among the video bands due to
the VC initial phases. For that purpose, a special device called the “Phase
and Delay Calibrator” is used (Figure 47). This calibrator system, which con-
sists of a Ground Unit in the VLBI terminal rack, and an Antenna Unit in
the receiver room, generates so-called “comb–tone” signal, which is nothing
but the comb function given in equations (19) and (23), i.e. equally spaced in
time delta functions (“pulse series”). As we saw before, Fourier transform of
the comb function in the time domain is the comb function in the frequency
domain. Therefore, in the frequency domain, the comb–tone signal consists
of a large number of sine waves at equally spaced frequencies. Moreover, the
sine waves have regularly aligned phases, based on the reference signal from
the Hydrogen Maser Frequency Standard. The Antenna unit generates the
comb–tones and adds them to the observed signal in the RF band. In the
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actual observations, the LO frequencies of the Video Converters are selected
in such a way that at least one comb–tone signal falls into each of the video
bands (e.g., at a frequency of 10 kHz in the MK–3 system). The comb–tone
signals pass through the same units as the observed data do, and, therefore,
are affected by the same phase offsets due to the VC initial phases, as the
observed data are. Then, the data containing the comb–tones are digitized
and recorded. These comb–tones are later detected in the correlation pro-
cessing, and the phases of the comb–tones in the different video bands are
compared with each other, in order to estimate, and then remove from the
observed data, the unknown phase offsets due to the VC initial phases.
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Standard

A cos (ωt)

A cos [ω(t-τ)] Σ Bn cos [nω(t-τ)]
n

Round-trip
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Figure 47: Phase and delay calibration system in the MK–3.
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2.1.9 Hydrogen Maser Frequency Standard

The Hydrogen Maser Frequency Standard provides very high stability refer-
ence signals, usually at 5 MHz or 10 MHz, to the first downconverters in the
receiver room, the Video Converters, the Formatters, and to the Phase and
Delay Calibrator. It also provides clock pulses, usually at 1 PPS (pulse per
second), to many devices, to guarantee their synchronous operation. The Hy-
drogen Maser Frequency Standard is usually placed in a special magnetically–
shielded and temperature–controlled room, to shied against external distur-
bances as much as possible. Figure 48 shows a Hydrogen Maser Frequency
Standard installed in the VERA Mizusawa station.

Figure 48: A Hydrogen Maser Frequency Standard in the VERA Mizusawa
station.

2.1.10 Automated Operation by Control Computer

All devices in a VLBI observing station are usually designed to be fully con-
trollable by a single control computer (Figure 49). All commands for setting
LO frequencies, sampler modes, recording rates, etc., are remotely controlled.
Also, commands for antenna operations, measurements of system noise tem-
perature and meteorological parameters, and so on, are issued from the con-
trol computer. In a VLBI observation, a so–called VLBI schedule file is given
to the control computer, where all setting information, coordinates of the ob-
served radio sources, and station locations are listed. Also, the detailed time
sequence of the observing events, such as repointing the antenna to the next
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source, tape start, tape stop, and so on, are given in Universal Times (UT).
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Figure 49: A typical automated VLBI operation system.

The control computer automatically conducts all steps of the observation
by issuing commands to the antenna control unit, VLBI terminal, and data
recorder, according to the schedule file. As a result, the only remaining task,
to be done by an operator in a normal VLBI observation, is to change the
recording tapes once an hour or, at most a few times a day, depending on the
system design. The most widely used software for automated control of the
VLBI equipment, which was developed in the NASA Goddard Space Flight
Center (NASA/GSFC), is called the “VLBI Field System”.

2.2 Modern VLBI Systems

2.2.1 New Recording and Fiber–Link Systems

The major successors of the MK–3 system are listed in Figure 37. They are
the VLBA and Mark IV sytems based on the advanced head controls of the
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Honeywell M–96 recorder (Figure 38), the S2 system using 8 video cassette
recorders in parallel (Figure 39), and the K-4 system based on an ID1 digital
video cassette recorder (Figure 40).

Nowadays, modern VLBI recording systems with 1 Gbps recording speed
have been developed and some of them are already in use (Table 7). They
are the Mark V system (Figure 50) using a hard disk array instead of the
magnetic tapes, the K–5 system also based on the hard disk array (Figure
51), the GBR-1000 system based on an HDTV video cassette recorder (Figure
52), the VERA recording system based on a new ID1 digital video cassette
recorder (Figure 53), and the fiber–linked e–VLBI.

name type bitrate

Mark V hard disk array 1024 Mbps

K–5 hard disk array 512 & 2048 Mbps

GBR-1000 HDTV 1024 Mbps

VERA ID1 1024 Mbps

e–VLBI real–time fiber link > 2048 Mbps

Table 7: New generation recording and fiber–link systems.

Figure 50: Mark V recording system based on a new hard disk array design.
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Figure 51: K–5 VLBI terminal.
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Figure 52: GBR-1000 1 Gbps VLBI system based on an HDTV video cassette
recorder.
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Figure 53: VERA recording system based on a new ID1 digital video cassette
recorder.

2.2.2 Digital Baseband Converters

Another progress is beeing made in several countries for implementing digital
BBC systems based on the digital filtering technology. The idea is first to

Figure 54: Data Aquisition System of the KVN adopting the digital filter
system for the baseband conversion.

digitize a wideband IF data using a high–speed sampler (analog–to–digital
converter), and second to cut the digital data into baseband channels by
means of a high–speed digital filter. Then the baseband data will no longer
suffer from irregular bandpass characteristics of analog BBC’s and arbitrary
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phases added by the LO’s of the BBC’s. In fact, the digital filter can in prin-
ciple remove the phase calibration systems discussed above, as far as the LO
phase problem only is concerned. Also, the digital filter allows flexible orga-
nization of baseband channels meeting different scientific requirements. For
example, a single channel ultra–wideband data could be suited to imaging
very weak continuum sources, while 16 channel data are necessary for geode-
tic observations. Such a digital BBC system was developed and successfully
utilized in 4 stations of the VERA array.

Figure 54 shows the Data Aqusition System (DAS) of the KVN which
uses a digital BBC system for the baseband conversion. The DAS system
includes 4 high–speed samplers located in the receiver room. The 4 samplers
are equipped for 4 frequency bands to be simultaneously received for mm–
wave VLBI observations. Each sampler is capable of digitizing IF data of
512 MHz bandwidth using the higher–order sampling technique discussed
earlier with 1 Gsps speed in the 2–bit quantization mode (therefore, the
output bit–rate is 2 Gbps). The digital data are transmitted to the control
building via optical fiber cables. Then the digital filter forms 1, 2, 4, 8, and
16 baseband channels with bandwidths of 256, 128, 64, 32, and 16 or 8 MHz,
correspondingly, out of the 512 MHz / 2–bit / 1 Gsps input, depending on
scientific purposes.

2.2.3 e–VLBI

Several groups in the world are now developing VLBI systems based on high–
speed data transmission techniques via optical fibers. The idea is to replace
the data tapes by ultra–wide–band transmission cables. This technology
is now called “e–VLBI”. Figures 55 and 56 show the first successful EVN
(European VLBI Network) e–VLBI observation conducted by three observa-
tories, in April 2004, and a beautiful image of the gravitational lens object
B0218+357 obtained through this coordinated effort.

Of course, this technology by no means transforms VLBI into a connected–
element interferometer, since the frequency standards in different stations
must remain independent, in view of the essential technical difficulties to
transmit reference signals over thousands of kilometers without significant
delays or phase fluctuations. Nevertheless, this technology will bring VLBI
much closer to the connected–element interferometer, in the sense that the
observed data could be correlated and analyzed in real–time, or almost in
real time (“near–real-time”). For example, pioneering real–time e–VLBI ex-
periments conducted in the KSP (Key Stone Project, 1995–2001) of the CRL
(now NICT) regularly yielded final geodetic results a few minutes after each
observation. Moreover, the optical fiber cables offer even higher data trans-
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Figure 55: First EVN e–VLBI observation (2004 April) using radio telescopes
at Jodrell Bank, UK; Westerbork, the Netherlands; and Onsala, Sweden. The
lower panels show beats of the fringe amplitudes produced by two closely
spaced sources, and an image map obtained during the observation (from
URL: http://www.jive.nl).

Figure 56: A close–up view of the image of a radio–loud gravitational lens
JVAS B0218+357, obtained in the first EVN e–VLBI observation (from URL:
http://www.jive.nl).
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mission rates, and therefore higher sensitivity, than the magnetic tapes, or
hard disk arrays. Real–time VLBI experiments with 2.5 Gbps transmission
rate have been successfully conducted since 1998 (Figure 57). Even much
higher transmission rates are expected in new connected–element interfer-
ometer arrays (for example, 96 Gbps / antenna is planned for the Expanded
VLA (EVLA), and for the Atacama Large Millimeter and submillimeter Ar-
ray (ALMA)). High–speed correlators are now being developed to meet these
high data rates.

At the same time, less expensive and more widely accessible VLBI data
transmission, via broad–band Internet using the IP protocol, is also being
intensively studied, and has been successfully tested. This IP–based e–VLBI,
or IP–VLBI, seems to be a particularly promising technology which will
make VLBI observations much more user–friendly for many astronomers and
geophysicists around the world. The K–5 system, developed at the NICT, is
designed to realize the IP–VLBI concept (Figure 58).

2.2.4 VLBI Standard Interface (VSI)

Another remarkable example of progress in modern VLBI is the definition of
the international “VLBI Standard Interface (VSI)” specifications
(http://web.haystack.edu/vsi).

The world VLBI community has long suffered from incompatibily of the
various different VLBI systems, shown above, which had been developed in
different institutions. In order to cross–correlate data recorded on different
tapes by different VLBI systems A and B, say, one had to convert the format
of B’s data into A’s format, copy the converted data to A’s tape, and then
cross–correlate them with A’s correlator, or vice versa.

The purpose of the VSI specifications is to make all VLBI systems in the
world compatible, provided only that they obey these standard specifications.

So far, a hardware specification called “VSI–H”, and a software specifica-
tion called “VSI–S”, were worked out by an international working group of
VLBI specialists. Another specification for e–VLBI, to be called “VSI–E”,
is now under intensive discussion and development.

The VSI–H hardware specification defines a standard interface between
the “data–acquisition system (DAS)” (i.e. VLBI terminals) and the “data–
transmission sytem (DTS)” (i.e. tapes or hard disks), as well as between the
“data–transmission system” and the “data–processing system (DPS)” (i.e.
correlators). Figure 59 shows how the interface could be realized. Every
DAS, DTS, and DPS must have common connectors with well specified pin–
assignments and data rates. The actual data transmission media (the handler
units for tapes or hard–disks) are supposed to be equipped with a “data
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Figure 57: 2.5 Gbps fiber–linked real–time VLBI experiment “OLIVE–
GALAXY”, Japan (1998, December).
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Figure 58: IP–based e–VLBI developed for the K–5 system.
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Figure 59: VSI-H functional diagram (http://web.haystack.edu/vsi).
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input module (DIM)”, and a “data output module (DOM)”, which interface
the common connectors, and the connectors of the handler hardware. The
actual data formats in the individual data transmission media are arbitrary,
provided that the DIM accepts the input data stream (specified by VSI-H),
and the DOM yields the output data stream (also specified by VSI-H).

The VSI–S software specification defines protocols for handling VSI–H–
compliant equipment.

A number of VSI–H–compliant VLBI systems have been developed in
various countries, and successfully cross–correlated with each other.

3 Difficulties in Ground–Based VLBI

UNFINISHED.

4 Correlation Processing in VLBI

UNFINISHED.

5 Observables of VLBI

UNFINISHED.
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