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1 Fundamentals of Radio Interferometry

1.1 Two Explanations of VLBI

Two quite different explanations on the principles of Very Long Baseline
Interferometry (VLBI) are given in the literature. The two alternative ex-

planations are illustrated in Figure 1.
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Figure 1: Receptions of noise (left) and monochromatic wave (right) with
VLBI. This picture is based on a drawing originally provided by Dr. Kat-
suhisa Sato.

1.1.1 VLBI System

The VLBI system itself is described in almost the same way in these two
explanations:

Two or more antennas are located at distant stations. They ob-
serve the same radio source at the same time. The observed data



are recorded on magnetic media, such as magnetic tapes, with
accurate time marks generated by independent, but highly sta-
ble and well synchronized, clocks (or, better to say, frequency
standards). The recorded media are sent to a correlation center,
where they are played back and mutually multiplied and averaged
(integrated) for some duration of time. This “multiplication and
integration” procedure is called “correlation processing”.

The geometry of the observation is also presented in a similar way:

The radio wave from the same radio source must travel slightly
further to reach antenna @ (right hand one in Figure 1) than
antenna @ (left hand one), with a small time delay 7,. The delay
7, is determined by the geometric configuration of the antennas
and the radio source, and hence it is called the “geometric delay”.

The difference begins with the treatment of the signal from the radio
source.

1.1.2 “Geodetic” Explanation — Noise Approach

One explanation, shown in the left panel of Figure 1, which is favored in
geodetic VLBI, regards the signal as a random noise time series.

If we simply multiply and average the two played-back data
streams recorded at the same time, we must get a nearly zero
result in most cases, since we are in effect averaging products of
two random noise time series, which is also random noise, with all
possible positive and negative values. But if, and only if, we shift
the playback timing of the record from the antenna @ exactly
by the geometric delay 7,, while keeping the playback timing of
the record from the antenna @ unchanged, then the noise pat-
terns from the same source in the two records ® and @ coincide.
Therefore, the product of the two time series always gives posi-
tive values (since plus times plus is plus, and minus times minus
is also plus) and the integration yields some finite positive value.
Thus, we “get the correlation” of the two records. By carefully
adjusting the time shift value so that the maximum correlation
is obtained, we precisely determine the geometric delay with an
accuracy of 0.1 nsec (107! sec) or better, which is sufficient to
determine the plate movements of the continents with typical
speeds of a few cm / year.



1.1.3 “Astrophysical” Explanation — Monochromatic Wave Ap-
proach

Another explanation, shown in the right panel of Figure 1, which is favored in
astronomical VLBI for very high angular resolution imaging of radio sources,
regards the signal as a monochromatic sine wave.

Two waves from the same source with an angular sky frequency w
arrive at two antennas, giving rise to sinusoidal oscillations with
a small time offset 7, due to the geometric delay. Therefore, the
played—back data records from antennas @ and @ are propor-
tional to sin(wt) and sin(w(t — 7,)), respectively. Their product
is then proportional to

sin(wt) sin(w(t — 7)) = %{cos(m-g) —cos(2wt —wTy)}. (1)

It is clear that the contribution of the rapidly oscillating second
term in the right hand side of equation (1), at a frequency twice
as large as the sky frequency, is almost nullified after time aver-
aging (integration) over some duration. Therefore, only the first
term, which is proportinal to cos(w,), is left after the correlation
processing.

This term expresses a sinusoidal interferometric fringe pattern on
the sky, because the argument w7, varies with the source direc-
tion in the sky. In particular, since wr, = 2mwer, /A, where c is the
light velocity, and A\ = 27¢/w is the wavelength, the fringe pattern
reverses its sign when the path length difference c7, changes by
a half wavelength \/2, as expected from the standard theory of
interferometry. The angular distance corresponding to the sepa-
ration between two successive peaks of the fringe pattern is called
the “fringe spacing”. If the radio source is more extended than
the fringe spacing, contributions from various elements of the
source are mutually compensated in the correlation processing,
due to the different signs of the fringe pattern over the extended
source. Therefore, the strength of an extended radio source is
significantly diminished in the VLBI output. If the source is suf-
ficiently compact compared with the fringe spacing, on the other
hand, the amplitude of the source strength is almost the same
as what is measured by a single dish radio telescope. Thus, the
VLBI output contains information on the source structure. By
analysing the VLBI data obtained with various fringe patterns,



we can obtain a detailed image of the source structure, with sur-
prisingly high angular resolutions of 1 milliarcsecond, or better.

Each of these two explanations, if examined separately, seems clear and
internally consistent. But it looks as if they are explaining completely difer-
ent observational technologies, having no common feature at all. Neverthe-
less, they are the explanations of the same VLBI instrument, observing the
same radio source, with the same antennas, receivers, frequency standards,
magnetic tapes, and correlators. Then, how can we understand the two ex-
planations from a unified point of view?

1.1.4 Superposition of Monochromatic Waves

Both of the above two explanations deviate from reality on the same point,
but in opposite directions. This point is the spectrum of the received signal.

The noise approach implicitly assumes that the spectrum of the signal
is white, i.e. the amplitude of the spectrum is finite, and more or less con-
stant, in a very wide range of frequency. While this assumption may not
be too bad for the radio wave propagating in space, it is certainly not valid
for the received signal, which must be band-limited due to the frequency
characteristics of the optical and receiving systems of element antennas.

The monochromatic—wave approach, on the other hand, assumes an in-
finitely narrow bandwidth, when it talks about a wave having a certain fre-
quency. But this is, of course, far from the reality (Figure 2).

() ®

White spectrum in ’geodetic’ explanation. Line spectrum in ’astrophysical’ explanation.

(0]
But the reality is a *band-limited white spectrum’.

Figure 2: Different source signal spectra assumed in the two explanations.



So, what will come out, if we take a more realistic picture, by summing up
the monochromatic waves with different frequencies, spread within a certain
bandwidth? Figure 3 shows an answer.

Fringe Patterns with Different Frequencies within 10 % of Center Frequency Combined Cosine Fringe Patterns with Slightly Different Frequencies
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Figure 3: Fringe patterns of 11 monochromatic waves with slightly different
frequencies within a bandwidth which is 10 % of the central frequency (left),
and their superposition (right).

Here, we summed up 11 fringe patterns of monochromatic waves (left
panel of Figure 3), which have slightly different frequencies, distributed at
even intervals within a bandwidth B, centered at vy = wy/27, to generate
the superposed pattern shown in the right panel of the same figure. The low-
ermost curve, in the left panel of Figure 3, shows the fringe pattern cos(w;7,)
with the lowest angular frequency w; = 27 (g — B/2), while the uppermost
one shows the fringe pattern cos(w,7,) with the highest angular frequency
wy = 27 (v + B/2).

The horizontal axes of both panels in Figure 3 show the geometric delay
74, multiplied by the bandwidth B, within a range of —2 < Br, < 2. We took
the center of the horizontal axis at 7, = 0, since the noise approach predicts
that the finite correlation is obtained only when the playback timing of one
record is shifted by the geometric delay. This shift is made to align the two
records, as if the same wave front is received at the same time by the two
antennas. This is obviously equivalent to effectively reducing the geometric
delay to zero. Therefore, we assume the simplest case, where the source
direction is nearly perpendicular to the baseline, so that 7, ~ 0 from the
beginning.

We assumed here that the bandwidth is equal to 10 % of the central
frequency (v = 10B).



1.1.5 Fringe Pattern Appears within an Envelope

The right panel of Figure 3 shows a rapid oscillation, enclosed by a more
slowly varying envelope. The rapid oscillation has 10 peaks and valleys,
within an interval of A(B7,) = 1. The number 10 here is nothing but
the ratio vy/B. So, this corresponds to the fringe pattern cos(wy7,) at the
central angular frequency wy = 27y, as expected in the monochromatic—
wave approach.

But the fringe pattern here does not have a constant amplitude. Instead,
it is enclosed by an envelope which takes a maximum value at 7, = 0, when
the two time series, obtained from the same source with two antennas, are
most coincident with each other. This reminds us of the explanation of the
correlation result in the noise approach.

1.1.6 Peak of the Envelope

Combined 100 Cosine Fringe Patterns with Different Frequencies
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Figure 4: Superposed fringe patterns of 100 monochromatic waves, with
slightly different frequencies, contained within a bandwidth equal to 10 % of
the central frequency.

In order to see the point more clearly, we make our model still closer to
an actual continuum spectrum, by increasing the number of monochromatic



waves to 100, but keeping the same bandwidth (B = 14/10), and show
the superposed fringe patterns over a wider range of the horizontal axis:
—20 < Bty < 20. The result is given in Figure 4.

Now it is clear that the correlation result of the superposed monochro-
matic waves has sufficiently large amplitude only within a small range of the
geometric delay around 7, = 0, which is roughly given by —1/B <7, <1/B.
Although there are a number of sidelobes due to the finite bandwidth, the
amplitude of these sidelobes rapidly decreases with increasing |7,|. Therefore,
Figure 4 is actually quite close to what is expected in the noise approach.

As a matter of fact, in a standard procedure for geodetic VLBI, the peak
position of the envelope of the fringe pattern, such as the one shown in Figure
4, is searched by effectively shifting the playback timing of one record against
the another. The peak is obtained at the time shift value which makes the two
records most coincident, as if the same wave front was received at the same
time by the two antennas. The best time shift value thus obtained yields an
estimate of a quantity called the “group delay”, which will be explained later
in more detail. After some corrections for systematic effects, the group delay
serves as a good estimate of the geometric delay, which is further analysed
to obtain scientific results in geodesy, geophysics, and astronomy.

Since the horizontal axis of the Figure 4 stands for B7,, the larger the
bandwidth, the narrower the envelope is, in terms of the geometric delay
7,. Therefore, the accuracy (or statistical error) of determination of the
geometric delay in geodetic VLBI will be proportional to 1/B. Also, the
accuracy must be inversely proportional to the signal-to—noise ratio S/N of
the observation, since the higher the S/N, the finer we can determine the
peak position of the envelope. Although we do not know the exact number of
the proportinality coefficient yet, we just assume that the coefficient is close
to 1, for the purpose of a rough estimation.

So, if the bandwidth B is 500 MHz and the S/N is 20, then the expected
accuracy is around

1 1

= =107 =0.1 :
(S/N)B~ 20 x 5 x 108 Hee

Therefore, we can already understand, at least qualitatively, how a 0.1 nsec
accuracy is achieved in geodetic VLBI.
1.1.7 Fringe Pattern Enclosed by the Envelope

Now, as an opposite extreme, let us adopt a narrower bandwidth B = v4/40,
compared with the central frequency 1y, and look at a narrower range:
—0.2 < Bty < 0.2. The result is given in Figure 5, which clearly shows
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Figure 5: Superposed fringe patterns of monochromatic waves, with slightly
different frequencies, contained within a bandwidth equal to 2.5 % of the
central frequency.

the fringe pattern cos(wo7,), at the central angular frequency wy = 27y of
the band, which is quite similar to the one expected in the monochromatic—
wave approach.

Therefore, we can conclude that the two explanations are talking about
two extreme cases, corresponding to the very wide and very narrow band-
widths, of a common signal, which is composed of the fringe pattern at the
central frequency enclosed by the envelope pattern, whose sharpness is de-
termined by the bandwidth. Geodetic VLBI uses the envelope pattern to
determine the peak position, where the signals obtained at two antennas are
most coincident with each other, to get a good estimate of the geometric
delay 7,. VLBI source imaging uses the fringe pattern, which appears within
a limited central range of the envelope pattern, to derive the high angular
resolution structures of astronomical radio sources. Both tasks can be done
with the same VLBI telescope.

Although we could obtain, at least qualitatively, a unified view on the
apparently quite different two approaches, the above discussion assumed the
ensemble of a finite number of monochromatic waves, which are still not
very realistic. More rigorous treatment of the signals with band-limited
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continuum spectra can be obtained in the so—called “white fringe theory”
(e.g., Thompson, Moran and Swenson, 2001), which is based on the statistical
theory of the stationary random processes.

1.2 Elements of Stationary Random Processes

The radio waves coming from astronomical sources are mostly generated by
chaotic processes occuring in the source regions. For example, the thermal
radiation is caused by the thermal random motions of the atoms, molecules
and free electrons, while the synchrotron radiation emerges from the random
explosive processes, which accelerate relativistic electrons in magnetic fields.
Hence, the electromagnetic fields, or the voltages in the receiving systems,
associated with the cosmic radio waves, mostly show characteristics of the
Gaussian random noise time sereis, as the “geodetic explanation” assumed.
A mathematical tool, which well describes such a random noise time sereis,
is the statistical theory of the stationary random processes. Therefore, we
briefly introduce here basic elements of the theory, to the extent which will be
needed in following discussions. For deeper understanding, one can consult
with standard textbooks, for example, “Probability, Random Variables, and
Stochastic Processes, 2nd Edition” by Athanasios Papoulis (1984) .

Information
Reduction of theory
Theory of experiments
turbulence
Statistical
physics
(Stationary) Random Process

Correla’:ion
processing
sampling
sensitivity

Figure 6: Statistical theory of random processes is a powerful tool for a
variety of scientific disciplines.

Economic
forecasting

Trends in
population

Quality
control

The statistical theory of the random (or Stochastic) processes has wide
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applications to many disciplines of radio astronomy, as well as other natural
and human sciences, as illustrated in Figure 6.

In the antenna theory, the basic framework was the electromagnetics,
and the vector algebra was used as the main mathematical tool. In the
theory of radio interferometry, however, we will no longer newly deal with the
electromagnetics. Instead, we will intensively use the theory of the stationary
random process as the fundamental tool for the mathematical development
of the theory.

1.2.1 Basic Concepts

Random (or Stochastic) Process

A process z(t) is called “random (or Stochastic) process”, if it is a function
of time ¢, and, if its value x(¢) at any time ¢ is a random variable, i.e., may
vary from trial to trial (see Figure 7).

If we characterize each trial of an experiment by an outcome ( of the
experiment, the random process can be represented as a function of both ¢
and ¢, i.e., as x(t, ().

x(t)
[
T~ - \,\
\‘\_ g T
~ N \”, P | N ~ .
e TN s T~ _ o~ triall
. — N_ w ; 1__--' ~. \‘.\‘
d YN LT e .
A -~ X \ . "~ trial 2
’./__.--\\ el N RS | .
R < R
/{ S \\ s ,’ \_T‘ o tl’lal 3
g OV e~ _.— trial 4
L Seon__mm " trial 5
\
|
0 t t

Figure 7: A random process is a function of time whose value at any time ¢
is a random variable.

The random process is a mathematical model of any time—varying and,
in general, deterministically unpredictable process. The properties of the
random process are usually described in terms of statistical quantities, such
as probability distribution, probability density, expectation, correlation, co-
variance, etc.
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Probability Distribution and Probability Density

Let us first consider a real random process x(t).
Let us denote a probability for x(t) at a specific time ¢ not to exceed
a certain number z, as P{z(t) < z}. Also, let us denote a probability for
occurence of multiple events, x(t;) not to exceed z1, x(tz) not to exceed x,
-+, and x(t,) not to exceed x,, as P{x(t;) < xy, x(t2) < xo, -+, x(t,) <
Now, the first-order probability distribution F'(z;t) of the random pro-
cess z(t) is defined as:

Fa; t) = P{a(t) < x}. (2)

Likewise, the second—order probability distribution F'(x, xo; t1, t3) is de-
fined as:

F(x1, x5 t, ta) = Pla(t)) < a1, 2(ts) < 29}, (3)

and the n—th—order probability distribution F(xy,- -+, x,; t1,- -+, t,) is de-
fined as:

F(xy, -, xp; ty, -, tn) = Pla(ty) <, -, 2(tn) < x,}. (4)

On the other hand, the first—order probability density f(x; t) of the ran-
dom process z(t) is defined as a derivative of the distribution F(z; t) with

respect to x:
. O0F(x; 1)

Since, by definition,

OF (x; t) . F(x+ Az;t) — F(x; t)
——— = lim :
oz Az—0 Ax

the probability density has a meaning:

Plz(t) <z + Az} — P{z(t) <z}

Az—0 Ax

~ lim Pl <z(t) <z + Al‘}'
A0 Az

(6)

Likewise, the second—order probability density f(x1, x2; t1, t2) is defined

as:
O*F (1, x2; t1, to)

8x18x2 ’ (7>

f(xh To; t17 t2) —

14



and the n—th—order probability density f(x1,- -, z,; t1,- -, t,) is defined as:

_3"F($1,---,xn; tl,"',tn) (8)
N Oxy -+ 0xy ‘

Generally speaking, if £ is continuous, we need infinite number of various
orders of probability distributions, in order to properly describe a random
process. In many practical cases, especially in cases of stationary random
processes, however, it is sufficient to take into account first— and second-—
order distributions only, as we will see later.

f(xh“'?'rn; tla"'>tn)

Following general properties are satisfied for probability distributions and
densities, as evident from their definitions:

° F(OO; t) =1,
° F(ZL’l; tl) = F(ZL’l, 005 t, t2)>

o f(x;t) >0 (ie., F(x;t)is a monotonically increasing function of ),
Z2

. /f(x; t)da = P{z, < z(t) < 22},

1

o flx1:ty) = / f(z1, xo; t1, ta) dus,

o 7Of(;177 t)de = 1.

Now, let us consider a case, where a random process z(t) is a complex

process:
2(t) = x(t) +iy(t),

where a real part z(t) and an imaginary part y(t) are real random processes,
and 7 is the imaginary unit.

The probability distribution of the complex random process z(t) is defined
by the joint probability distribution of z(¢) and y(t). Thus, the n—th—order
probability distribution is defined as:

F(Zla"'7 Zn; tla"'7tn) :F(xla'”7 Tns Y1, Yns tl?"'? tn)
- P{x(t1> < Ly, I(tn) < Tn, y(tl) < Y,y y@”) < yn}7 (9>
and the n—th order probability density is defined as:
f(zla"'> Zn; tla"'>tn) :f(mla'”a Tns Y1,y Yns t1>"'> tn)

_82"F(x1,---,xn; Yty 7y Yn; tlu"'7tn>
o Oxy -+ Oxp Oy - - Yy, :

(10)

15



When we have two complex random processes x(t) and y(t):

x(t) = 2" (t) +iz'(t),
y(t) =y"(t) +iy'(®),

where real parts z"(¢) and y"(¢), and imaginary parts z*(¢) and y'(t), are all
real random processes, we introduce joint probability distributions and joint
probability densities of the two complex random processes.

For example, the first order joint probability distribution of the complex
random processes z(t) and y(t) at times ¢; and to, respectively, is

F(z; y; ty; t) = F(a", 2% 7, ' t1; t)
= P{a"(t1) <" 2'(t1) < 2%y (ta) <y"; y'(t2) < y'}, (11)

and the corresponding joint probability density is

Sl sty t) = f(a”, 2's y', yfs ts o)
_OYF(aT, 2y, b )
N Ox" Ox' Oy Oyt '

(12)

Expectation (or Ensemble Average)

Expectation (or ensemble average) 7,(t) of a complex random process
z(t) = z(t) + dy(t) at time ¢ is defined as:

n0) = (:(0) = [ [ o) +iy(®) f(a: y: 1) dady, (13)

where the symbol (), which stands for the expectation, is often denoted
also as E{ }.

Autocorrelation

Autocorrelation R,.(t1, t2) of a complex random process z(t) = xz(t) +
iy(t) at times ¢; and t is defined as:

R..(t, t2) = (2(t1) 2" (t2))

oo oo oo

- / / / / 2(t1)2"(t2) f(z1, 225 Y1, Y25 1, t2) dwydzodyidys, (14)

— =R —00—00

wehere the symbol (- )* stands for the complex conjugate.
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Hereafter, we will usually omit sufficies such as zz, for simplicity, when
we express autocorrelations. Thus, autocorrelations R, (t1, t2), Ryy(t1, t2),
R..(t1, t2), and so on, will be all denoted simply as R(t;, t2), except for cases,
when we wish to explicitly specify the random processes under consideration.

Following general properties hold for autocorrelations.

[ ] R(tg, tl) = R*(tl, tg).
o R(t,t)={( 2(t) |*) >0, ie., real and positive.

e Positive definite, namely,

> > aa;R(t, t;) >0 for any numbers a; (i =1, 2,---, n).

i=1j=1
Proof
i=1 i=1j=1 i=1j=1
e An inequality:
| R(ty, t2) < R(ty, t1) R(ty, to). (15)

Proof -
1. For any complex random variables v and w, we have
(ollwh?<{vP){wp).

Proof :
Since we always have

(slvl+]wD?)=s"v)+2s(v]]w)+(wl?) =0,

for any real variable s, the discriminant of the above quadratic
equation with respect to s must be smaller than or equal to 0, i.e.,

(Jollw])?= (o) {wl?) =<0,

and, hence,
(ollwD)*< (o) {wl]?).

17



2. For any complex random variables v and w, we have
| (vw) [< (Jo[]w]).

Proof :

Let us first prove a general statement that, for any complex ran-
dom variable A = a +ib, where a and b are real random variables,
we have

| (A) [< ([ AJ).

Let us denote the probability density of A as f(a, b). Then | (A) |
and (] A |) are expressed as

(A [ = | [ [Af(a, b)daay]
= lim lim |33 Af(a, b)Aadb |, (16)

and
Gl = [ [141f@ b)dods
= lim lim Y > | A| f(a, b)AaAb

Aa—0 Ab—0
= lim lim Y3 | A f(a, HAaAb |, (17)

where we replaced the integrtions by the infinite summations,
which are performed in the same way in both equations (16) and
(17), and we used a property of the probability density f(a, b) in
equation (17), that it is always real and greater than or equal to
ZETO.

Now, for any complex numbers B and C', we have
| B+CI<| B+ [C],
since
|B+C| = J(B+C)(B+C) =/| B +B*C+BC*+|C |2
= JIBP+2|B||C] cosd+|C P2,

where we introduced an angle ® satisfying
B*C=|B||C|e?,

is always smaller than | B | + | C |, because cos® < 1. This
relation is easily extended to the sum of arbitrary number n of
complex numbers By, B, ---, B, i.e.,

=1 i=1

18



because
> Bil=|Bi+ ) Bi|<|Bi|+ Y Bi|=| Bi| + | B2+ )_Bi|
i=1 i=2 i=2 =3

§|Bl|+|B2‘+|ZBi|:"'§|B1‘+|B2|+"'+|Bn‘.

=3

Applying the above relation to the summations of equations (16)
and (17), we confirm that | (A) | < (| A |).

This implies that | (vw) | < (Jv || w |), since
|l vw |= Vvwvrw* = Vorvuww* =| v || w | .
3. From 1. and 2. above, we obtain
[ (vw) P< (Jvl[w)? < (v P)(w),

- ww) P< (o) (w2, (18)

If we adopt here v = 2(t1) and w = 2*(t5), then we prove that

| R(ty, t2) 7 < R(t1, t1) R(ts, ta).
Autocovariance

Autocovariance C(t1, to) of a complex random process z(t) at times t;
and t, is defined as:

Cl(ty, ta2) = R(t1, t2) — n(t1) n*(t2), (19)

where n(t) = 7.(t) = (z(t)) is the expectation of z(¢) at time t.
The autocovariance of z(t) is equal to the autocorrelation of Z(t) = z(t) —
n(t), i.e.,
C(ty, ta) = Rzz = (2(t1) 2% (t2))- (20)

In fact,

(Z2(t1) 2°(t2)) = ([z(t1) 2"(t2) — 2(t1) m"(t2) — n(t1) 2" (t2) + n(t1) n*(t2)])
= R(t1, t2) — n(t)n"(t2).
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Correlation Coefficient

Correlation coefficient r(t1, t2) of a complex random process z(t) at times
t1 and ty is defined as:

C(ty, ta)

VOt 1) Clt, t) (21)

T(tl, t2) =

It is evident that
o r(t,t)=1.

Also, the absolute value of the correlation coefficient is always smaller than
or equal to 1:

o [r(t, t2) <1,
since from equations (15) and (20), we have

| O(t1, ta) |°< C(ty, t1) C(ta, t2).
Cross—Correlation

Cross—correlation Ry, (t1, t2) of two complex random processes x(t) =
x"(t) + i2'(t) and y(t) = y"(¢) + iy'(t) at times ¢; and ¢y, respectively, is
defined as:

Ryy(th, ta) = (x(t1) y*(t2)) =

o0

/ / / / w(t) y*(ta) f(2", 'y, y's b to)da” da’ dy” dy',  (22)
using the joint probability density of x(t) and y(t), given in equation (12).
Following properties hold for cross—correlations.

[ J ny(tg, tl) = jom(tla tg).
This is evident from the above definition.

L4 ‘ ny(tla t2) ‘2 S Rxw(tlu tl) Ryy(t27 t2)
This is proven by adopting v = z(¢;) and w = y*(¢2) in equation (18).
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Cross—Covariance

Cross—covariance Cyy(t1, t2) of two complex random processes x(t) and
y(t) at times t; and ¢, is defined as:

Cuy(tr, ta) = Rayy(t, ta) — na(tr) ny (ta). (23)
Following properties hold for cross-covariances.

e The cross—covariance of z(t) and y(t) is equal to the cross—correlation
of Z(t) = w(t) — na(t) and §(t) = y(t) —ny (1), ie.,

O:cy(tb t2) = R:Ez](tb t2) = <j(tl)g*(t2)>

hd ‘ Czy(tb t2) ‘2 < O:c:c(tb tl)cyy(t% t2).
Cross—Correlation Coefficient

Cross—correlation coefficient 7,,(t1, t2) of two complex random processes
x(t) and y(t) at times t; and ¢ is defined as:

Co(ty, t
Try(tlu t2> - y( . 2) (24>

- \/C(L'(E(t17 tl) ny(t27 t2) .

It is evident that for any cross—correlation coefficient we always have

o | ray(ty, o) [< 1.
Normal (Gaussian) Process

As an example of the probability density introduced in equations (5), (7),
and (8), we consider here probability desnity of a particularly important class
of random process, namely normal (or Gaussian) process, which is known to
be a good model of signals from astronomical radio sources, as well as of
noises produced in antenna-receiving systems or in environments.

Real random process x(t), with expectation 7(t) and autocovariance C (1, t2),
is called “normal (or Gaussian) process”, if, at any times t1, to, - - -, t,, for any
n, random variables x(t1), z(ts), - - -, x(t,) are jointly normal (or Gaussian),
i.e., they are characterized by following probabilty densities.

e First—order Gaussian probability density:

[z th) = e i (25)




where 11 = n(t1) and ¢? = C(t1, t;) are expactation and dispersion,
respectively, of z(t) at time ¢;.

e Second-order Gaussian probability density:

f(xh X2, t17 t2)
1 1 ((11—;71)2 o (11—771)(12—772)_,_(12—772)2)

— e 2(1—r2) o o109 o3
2wo109V/ 1 — 12

1
where we introduced notations: n; = n(t1), 1o = n(ts), o3 = C(ty, t1),
o5 = C(tg, ty), and correlation coefficient:

C(ty, ta)
JO, 1) Clta, 1)

, (26

r =

e n-th-order Gaussian probability density:

f(x:b'--’gjn;tl,...’tn)
1 s e (27)
= ¢ =1 iz ,
(2m)"A

where n; = n(t1), n; = n(t;), Cij = C(t;, t;) is autocovariance matrix,

Cj;' is its inverse, and A = det{C};} is its determinant.

When n = 1 and n = 2, equation (27) is reduced to equations (25)
and (26). Therefore, the first— and second-order Gaussian probability
densities given in equations (25) and (26), respectively, are special cases
of the more general expression of the n-th—order normal (or Gaussian)
probability density given in equation (27).

Likewise, we can conceive a number of normal (or Gaussian) processes
which are jointly normal with each other.

e Two real normal processes x(t) and y(t) are called “jointly normal (or
Gaussian) processes”, if, at any times t; and t5, random variables x (¢ )
and y(ty) are jointly normal, i.e., they are characterized by following
joint probabilty density:

f(zv Y; tla t2)

2 2
1 _ 1 ((I*”?m) —2r, (r*nz)(yfny)_i_(y*ny) )
e 2(1—7‘%y) o2 Y oxoy 0.5

x

1 —r2 ’
2mop0y /1 — 1z,

22
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o,

where we introduced expectations of x(t1) and y(t2): 17, = n.(t1) an

)
ny = ny(ta), dispersions of z(t1) and y(t2): 02 = Chu(ts, t1), o
Clyy(ta, t2), and cross—correlation coefficient:
ny(tlu t2)
\/Crr th tl) ny(t27 t2)

Here Cyu(t1, t1), Cyy(ta, t2) and Cuy(ty, t2) are autocovariances and
cross—covariance of z(t1) and y(t3), correspondingly.

a.
2
Y

An arbitrary number m of normal processes x(1)(t), z(2)(t), - -, Tm)(t)
are called “jointly normal (or Gaussian) processes”, if, at any times t;,
ty, -+, tm, random variables x(1)(t1), 2(2)(t2), - -, T(m)(tm) are jointly

normal, i.e., they are characterized by following joint probabilty den-
sity:

where 73;)(t) is expectation of x;)(t), Cy) = C. (ti, t;) is cross—

()P ()
covariance matrix, C(Z)( ) is inverse matrix of C(;)(;), and A = det{C;;) }

is determinant of C(;)(;).

Of course, equation (28) is a special case of equation (29) with m = 2.

In the above statement, some random variables among x1)(t1), (2)(t2),

“+, T(m)(tm) could be values of the same normal process taken at dif-
ferent times. In such a case, some elements of matrix C(; ;) are auto-
covariances, rather than cross—covariances.

In this sence, joint probability densities of a single normal (or Gaussian)
process given in equations (25), (26), and (27) can be regarded as
special cases of the joint probability density of the jointly normal (or
Gaussian) processes given in equation (29).

It is not difficult to confirm that the joint probability densities of jointly

normal (or Gaussian) processes given in equations (25) — (29) are consistent
with geneal properties of joint probability densities, as well as with definitions
of the expectation and the covariances, as explained in standard textbooks.
For this purpose, we can use well-known integration formulae:

00
™

2
e gy = )= 30
[etan = 2, (30)

— 00
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(e}

/:Ee_‘””Q de = 0, (31)
7 —ax2? 1 ™
/x2e de = 5\ o5 (32)

for a > 0.
For example, if we take the form of the joint normal (or Gaussian) prob-
ability density given in equation (28), we can confirm following formulae.

. _ZZ [z, y; t, ) dy = f(x; t):

J flx, y; t1, ta) dy

o) w—ng) (y— _
(z—ng) —27”zy( nz) (Y ny)+(y 7;y)

2
_ 1
e 2(177‘3201/) a% oxoy oy ) dy

1ﬁ /
2mo,oy\ /1 =12,

1 (z ’flcc) ) (z— ’flcc) / )
— / 2(1 sz) Uz Tzy y+y dy/

TOz/1 —7‘:% /

(z z) e, TNT 2
2,) =3l (i, 220 )]dy,

o0 72
_ (z—ng)? Yy
_ 1 o 202 /6 2(1-12,) dy”
2
2o\ /1 =13, kS
1 _(1—03)2
= e = f(z;t), (33)

O, V2T

in view of equation (30), where we introduced variable transformations:

y/:y_ny’ y//:y/_rxyl’—nm.
O'y Oy
e Fxpectation:
(z) = //xf(rr, y; b, to) dedy = /1’ /f(rr, y; b, ta) dy da

n 1 i (@=np)?

— /xf(x;tl)dx = Uz\/ﬁ_loxe_ 202 (g

— o0
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o

1 _(z—m)?
= r—ng) +nle 2% dx
ol LGRS SR AL
nw 7 _(z ’O;) d 34
= e %z dr = n,,
UI\/QW_»O/O g (34)

in view of equations (30) and (31).
e Covariance:
((z =m2) (y —my))

- //(x_”w>(y_77y)f(f€,y;tl,t2)d:cdy

—00 —OO
1

N 2

2mo0y, /1 — g,

o0 o0 1 (@=nz)? (z=nz)(y=ny) | (y—ny)>
2(1—12,) -2 274y cwoy + 52

X (=) (y—my)e w0 i) dxdy

-0 —O0

2 1,0 12
0,0 (@ 2rpy 2’y +y’7)
_ Ty / / y e 21— 'rzy) dx’ dy'

2m, /1 —r%y oI

//2 "2

21, /1 —r:%y o

2
Ox Oy Ty T 912 2 _u’%
_ Ty ry / 2(1 sz) de’” /y// e 2 dy”

27Tm e s
Oz 0yTay
= QWW\/WV = Ty 0,0, = Cpylty, ta), (35)
zy

in view of equations (30), (31), and (32), where we introduced variable
transformations:

r—n y—n
/o T ! Y
r = ) y_ )
(o Oy
" / / " /
=T =Ty, Y =Y.

In following discussions, we will mainly use general properties of expectations
and correlations, without specifying explicit forms of probability densities.
However, when necessary, we will assume jointly normal (or Gaussian) pro-
cesses, and explicitly use expressions of the normal probability density given
in equations (25) — (29).
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1.2.2 Random Processes in Linear Systems

Definition of Linear Systems

Let us consider a system of two complex functions x(t) and y(t) of time
t, which are related with each other by an operator L:

y(t) = Lz (t)], (36)

where z(t) is called “input” and y(t) is called “output” of the operator L.
Such a system is called “linear system”, if the operator L satisfies

Llay z1(t) 4+ ag 22(t)] = a1 L]x1(t)] + as L[zo(t)], (37)

for any complex coefficients a1, as and for any functions z(t), x2(t).
The linear system is also called as “linear filter”, which linearly “filters”
the input z(¢) to yield the output y(t).

Impulse Response

If the input of an operator L is a delta function §(¢) of time ¢, the output
is called “impulse response” of the operator, which we denote as h(t):

h(t) = L[5(%)]. (38)

Here, we introduce “convolution” f(t) % g(t) of functions f(t) and g(t),
which is defined by a following infinite integration:

[0+ gt) = [ 1t =a)gla)da, (39)

where symbol “x” stands for the operation of the convolution. Convolution
has following properties:

f(t)*xg(t)=g(t)* f(t) (commutative),

because
g0+ f(0) = [ gt=p) f(B)d8= [ F(8)glt=B)db= [ ft=a)g(a)da,

where we used a transformation of the argument of the integration: o =t — /3
and hence df = —da,

26



and

fOxg(= = [ FE=B)g=0)ds= [ f(t+a)g(a)da.
where we used a = —( and df = —da.

Then, the output of the linear system can be represented as a convolution
of the input and the impulse response, i.e.,

y(t) = 2(t) % h(t) = / 2(t — o) h(a) da. (40)
This equation is easily proven, based on the definition of the delta function,
in the following way:

y() = Lle(] = L[ [ 2(8)d(t = B)ds) = [ a(8) Llb(t - B))d
- / 2(B) h(t — B)dB = / (t — ) h(a) da = (1) * h(2).

Note that L operates only on a function of time ¢.
Linear Systems with Random Processes as Inputs

Hereafter, we will consider linear systems having random processes as
inputs. Then, we have following general properties.

e If z(¢) and y(¢) are input and output of a linear system, their expec-
tations (x(t)) and (y(t)) are also related with each other as input and
output of the same linear system, i.e.,

(Llz(®)]) = L{z(t))],

((t) = h(t)) = (x(t)) * h(t),
my(t) = L{n.(t)]. (41)
Proof -
(x(t) * h(1)) = { / 2(t — ) h(a) da) = / (z(t — a)) h(a) da
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Note that the impulse response h(t) is a deterministic function of time,
and, hence, not affected by the ensemble average.

e Autocorrelation of the output:

Ry, (t1, ta) = Ryu(ty, t2) * h(t1) * h*(t2),

or
yy tl; t2 / / Rmc - Q, t2 - ﬁ) h(OZ) h*(ﬁ) dO{ dﬁ (42)

Proof :

1. Cross—correlation of the input and the output is

Ry (ty, ta) = (x(t) y"(t2)) = ((tr) 27 (t2) * 1" (2))
= (x(tr) 27 (t2)) * h*(t2) = Rualty, t2) * h*(t2),

or

xy tlu t2 / Rmr tla t2 )h*(ﬂ) dﬁ

2. Autocorrelation of the output is

Ryy(t1, t2) = (y(t1) y™(t2)) = (x(t1) * h(t1) y*(t2))
= (2(t1) ¥ (t2)) * h(t1) = Ray(t1, t2) * h(t1),

or

Ry, (t1, to) = / R,,(t1 — «, t3) h(a) da.

3. From 1. and 2. above, we have

Ryy(th tQ) = Rmm(tl, t2) * h*(tg) * h(tl)
= Rxx(t]_’ tg) * h(tl) * h*(tg),

or
yy tl; t2 / / Rrr - Q, t2_ﬁ) h,(Oé) h*(ﬂ)d@dﬁ

1.2.3 Stationary Random Processes

Definitions
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e A random process z(t) is called “stationary” (or, more specifically,
“wide—sense stationary”), if the expectation does not depend on time,
and the autocorrelation is a function of time difference only:

(z(t)) = n = const,
(2(tr) 2% (t2)) = R(7), (43)

where 7 = t; — ts.

e Random processes z(t) and y(t) are called “jointly stationary”, if both
of them are stationary, and their cross—correlation is a function of time
difference only:

(@(t1) y*(t2)) = Bay(7), (44)

where 7 = t; — ts.

Of course, it is not easy to find actual physical processes which strictly satisfy
these conditions. For example, some of quasars or astronomical masers are
known to exihit significant time variations in yearly, or shorter, time scales.
In a practical sense, however, physical processes are well approximated by
the stationary random processes, if equations (43) and (44) are fulfilled dur-
ing time scales, which are sufficient to estimate their statistical properties
(see discussions on ergodicity in section 1.2.4). In this sense, many physical
processes can be successfully modeled as stationary random processes.

Properties

Following formulae can be easily derived, by applying general properties
of correlations, covariances, and so on, to the particular case of the stationary
random processes as defined above.

e R(—7) = R*(1).

[ ]
S
—~
o
S~—
I
f
N
—~
~
~—
s
~
V
e}

°
p—U
@)
m.
=
<
@
ol
@
j=p
E.
=+
@
=
D
197]
A

Y. > aiaR(t; —t;) >0, for any a;.

[ ]
=
S
IN
=3
e

e C(1)=R(r)— | n|*  autocovariance.
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o (1) =C(7)/C(0), correlation coefficient.

o | (7)< 1.

Ry (=7) = Ry, (7).

o | Roy(7) [*< Rya(0) Ryy(0).

o Cpy(7) = Ryy(T) —mem,  cross—covariance.

o 1.y = Cuy(7)/1/Crz(0) Cyy(0),  cross—correlation coefficient.
o |[ryy(7) <1

1.2.4 Ergodicity

How can we estimate various statistical properties of a random process, if
we are given with a single sample of time series only, which is an outcome of
a single trial?

e Definition.
A random process z(t) is called “ergodic” if its ensemble averages are
equal to appropriate time averages.

This implies that we can estimate any statistical property of
z(t), using time average of the single sample, if the random
process is ergodic.

e Mean—ergotic process.
A random process z(t), with constant expectation:

n = (z(1)),

is called “mean—ergotic”, if its time average tends to n as averaging
time tends to infinity:

1
nT:ﬁ/z(t)dt — n as T — oo

-T

e A condition for the mean—ergotic process.
It is evident that



Therefore, z(t) is mean—ergotic, if its “variance”, or “dispersion”, o2
tends to 0 as T' — o0, i.e.,

or={nr—nl) =0 as T — co.

Since

T
o=l =)= | [
-1 —

—n) (2(t2) —n)*) dty dty

T
2/
B

where C(t1, t2) is the autocovariance, and we used here equation (20),
the above condition is equivalent to

T
2/
S

In the stationary random case.
If z(t) is a stationary random process, and, therfore, the autocovariance
is a function of time diffference 7 = t; — t5 only:

HI\D

H\%

C(ty, to) dity dts,

'ﬂ\’ﬂ

Ctl,tQ dtldt2—>0 as 1" — oo.

H\’ﬂ

C(t, t2) = C(7),

the double integral in the above condition is reduced to a single integral:

% / C(T)( |2TT|> dr — 0 as T — oo, (45)
—or
because
T T o
/ / O(t, to) dt, dts = / O(r)2T— | 7 |) dr, (46)
ST —or

as we can easily see from Figure 8. In fact, in the rectangular range
of integration — 7T < t; < T and —T < ty < T in Figure 8, the
autocovariance C'(7) is constant along a line ¢; —t, = 7, and an area of
the hatched region, put between two lines t; —t, = 7 and t;—ty = 7+AT
is nearly equal to the area of the enclosing parallelogram, which is equal
to (2T'— | 7 |) A7, in the linear approximation with respect to small
AT.
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t1
t1-t2=2T ti-te= T+AT
ti-te=1
2T-11l

T+AT

T ﬁ 0 T te

ti-te=-2T

Figure 8: Geometry of the integration.

e Correlation—ergodic process.
A stationary random process z(t) with an autocorrelation

R(€) = (2(t +&) 2" (1)),
is called “correlation—ergodic”, if the corresponding process ug(t):
ug(t) = 2(t + &) 2" (1),
is mean—ergotic, i.e., if

1
2

—

Ry

ug(t)dt — R(§) as T — oc.

~

Similarly to the case of the mean—ergotic process, z(t) is correlation—
ergotic, if the variance, or dispersion, o, = (| Ry — R() |*) tends to
0 as T' — oo, or, equivalently, if an autocovarinace of wug(t):

Cuu(T) - Ruu(T) - R2 (5)7
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where R,,(7) is an autocorrelation of ug(t):
Ry (1) = (ue(t + 1) ui(t)) = (2(t + 4+ 7) 2" (t +7) 2°(t + &) (1)),

satisfies the condition in equation (45) for any &, i.e.,
or
1/(J()1 L7 g 20 as T (47)
— e — — 00.
or ] T or | 7 >

For actual physical processes, which are approximated by the stationary
random processes, it is likely that autocovariances are finite everywhere and
tend to 0 when 7 — +oo. Therefore, equations (45) and (47) appear well
satisfied in the most cases. In the followings, we assume that these equations
are fulfilled, and, hence, we can estimate both expectation and correlation of
our physical process in terms of the time averaging of a single sample.

It is known that the power or the correlation of a moderately strong
signal from an astronomical radio source, which is estimated by time averag-
ing in a square—law detector or in a correlator, usually reaches a sufficiently
high signal-to—noise ratio, that means a small enough dispersion, after aver-
aging during seconds to hours, depending on telescope or array sensitivity.
The detected power or correlation is usually almost time—-invariant during
time—scales from hours to months. Therefore, radio astronomical data are
mostly consistent with assumptions of the stationary random process and
the ergodicity.

1.2.5 Stationary Random Processes in Linear Systems

Let us consider cases when inputs of linear systems are stationary random
processes. Then, we have following properties.

e If an input x(¢) in a linear system y(t) = L[x(¢)] is a stationary random
process, then an output y(t) is also a stationary random process.
Proof -

1. Expectation 7,(t) of the output y(¢) is constant in time, because

[e.e]

ny(t) = / N (t — a) h(a) da = 1, / h(a) da = const,

—00
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since z(t) is stationary, and hence, n,(t) = 7, is constant in time.

Thus, we have
[o¢]

Ny = N / h(a) dor. (48)

— 00

2. Autocorrelation Ry, (1, t2) of the output y(t) is a function of time
difference 7 = t; — t5 only, because

[e.e]

yy tla t2 / / Rzz —Q, t2 - ﬁ) h(O{) h*(ﬁ) do dﬁ

—00 —00
oo o0

- / /Rm(T—aJrﬁ)h(oz)h*(ﬂ)dad@;

since z(t) is stationary, and hence,
R:c:c(tl — Q, t2 - ﬁ) = Rzz(tl - — (t2 - ﬁ)) = R:c:c(T — _I_ ﬂ)
Then, the above formula is now expressed as:

Ry, (T) = Ryu(7) x h(T) * K*(—T). (49)

e If an input x(¢) in a linear system y(t) = L[x(¢)] is a stationary random
process, then the input z(¢) and the output y(t) are jointly stationary.

Proof :
1. We have proven above that, if the input is stationary, then the
output is also stationary, i.e., both x(¢) and y(t) are stationary.

2. Cross—correlation R,,(t1, t2) of the input z(¢) and the output y(¢)
is a function of time difference 7 = t; — t5 only, because

[e.o]

Ry (ty; t2) = (x(t) y"(12)) = /(x(tl)fr*(tz — a)) h*(a) do

= [ Rualr +0) (@) da = Ruulr) # *(=7).

Thus, we have
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e Likewise, we can prove an equation:
Ryy(7) = Ray(7) * h(7), (51)

which, together with equation (50), offers another derivation of equa-
tion (49).

o If z(t) and x2(t) are jointly stationary random processes, then out-
puts y1(t) and yo(t), which are obtained from x;(t) and xo(t) through
arbitrary linear operators L; and Lo, respectively, are also jointly sta-
tionary.

Proof -

Let the two linear operators L; and Ls correspond to impulse responses
hq(t) and hs(t), respectively. Then we have

oo

(1) = Lifzy(8)] = 21(8) % ha(£) = / 21(t — @) h(a) da,

—00

oo

alt) = Laloa(t)] = 2a(t) x halt) = [ walt — @) ha(a) dav

—0o0

Both y;(t) and y»(t) are, of course, stationary, and their cross—correlation:
Ry (ty, t2) = (y(ty) ys(t2))

= [ [ @it - a)aslts - B)) ha(a) Ha(5) dard

—00 —00

= 7 7 Rayao (T — @+ 5) ha(@) h3(5) devd3,

—00 —0O0

is a function of time difference 7 = t; — t5 only. This proves the joint
stationarity of y;(f) and y»(t), and yields

Ry, (T) = Rapyay (1) % ha (T) % hy(=7). (52)

1.2.6 Spectra of Stationary Random Processes

Definitions

e Fourier transform S(w) of an autocorrelation R(7) of a stationary ran-
dom process is called “power spectrum” (or “spectral density”) of the
process. Here, w is an angular frequency, which is related to a linear
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frequency v as w = 2wv. Thus, the power spectrum and the autocor-
relation are related to each other by the Fourier— and inverse Fourier

transforms:
S(w) = /R(T)e_iwdr, (53)
1 T WWT
R(r) = %_/ S(w)e™” dw. (54)

Hereafter, we express a Fourier transform pair by a symbol “<”. Then,

S(w) < R(1).

e Fourier transform S,,(w) of a cross—correlation R,,(7) of jointly sta-
tionary random processes z(t) and y(t) is called “cross—power spec-
trum”. Thus,

Selw) = [ Ruylr)e™™ dr, (55)
Rofr) = 5 [ Sufw)e do, (56)

and

Spy(W) € Ryy (7).

Note that convergence of Fourier integrals in equations (53) and (55), and
therefore in their inverses in equations (54) and (56), too, is usually guaran-
teed, since, for actual physical processes, R(7) and R,,(7) are mostly finite
everywhere, and tend to zero as 7 — 4o00.

Properties
e Power (| z(t) |?) of a stationary random process z(t) is equal to an
integrated power spectrum over the whole frequency range:

e} [e.e]

/ S(w) dw = / S(w) dv, (57)

—00 — 00

1

" 2r

(| 2(t) ) = R(0)

where v = w/(27) is a frequency, corresponding to the angular fre-
quency w.
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Power spectrum S(w) is a real function.
Proof :
Since R(—7) = R*(7),

S*(w) = /Oo R*(1)e™" dr = 7 R(—7)e™" dr = 7 R(T)e ™ dr = S(w).

For any cross-power spectrum, Sy, (w) = S, (w).
Proof :
Since Ryy(—7) = R; (1),

Sye(w) = / RS (7)™ dr = / Ry (—7)e™" dr = / Ryy(T)e ™7 dr
= Syy(w).

A power spectrum S(w) corresponding to a real autocorrelation R(7)
is an even function of w (see Figure 9):

S(—w) = S(w). (58)

S(w)

A

Figure 9: Power spectrum is even when autocorrelation is real.

Proof :

Since, in this case, R(—7) = R(7) (the real autocorrelation is an even
function of 7),

S(—w) = /OO R(7)e™" dr = 7 R(—7)e™" dr = /OO R(r)e ™ dr = S(w)



e A cross—power spectrum corresponding to a real cross—correlation sat-
isfies

Sey(—w) = Sy (w), (59)

and, therefore, is Hermitian symmetric:
Say(—w) = 53y (w), (60)

(see Figure 10).

Re Sxy((l)) Im Sxy(m)

ANVA ™
‘o ® \\/‘0 o

Figure 10: Cross-power spectrum is Hermitian symmetric (i.e., real part is
even and imaginary part is odd) when cross—correlation is real.

Proof :

Since, in this case, R, (—7) = Ry, (),

Spy(—w) = / Ry (T)e™™ dr = / Ryy(—7)e ™ dr = / Ry (T)e ™7 dr
= Sya(w),
and, in view of the general property S,,(w) = S;,(w), we also have

Sey(—w) = 55, (w).

e Real autocorrelation can be described solely by the positive frequency
range of the power spectrum.

Proof -
Since S(w) = S(—w), in this case,

R(r) = i/kS’(uJ)ei‘”alw:i{

2 2T

—00 —

\o

S(w)e™T dw + / S(w)e™T dw]
0

g
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[e.e]

! [ 8@l + =) d

" 2r

|-

_ / [S(—w)e ™ + S(w)e] dw

™

\)

N =

0

/S(w) cos(wT) dw = l%
T

0

7S(w)ei‘” dw] : (61)

e Real cross—correlation can be described solely by the positive frequency
range of the cross—power spectrum.

Proof -

Since S, (—w) = S}, (w), in this case,

o] 0 [e%e)
1 WwT 1 T T
Ryy(1) = 5 / Sy (Ww)e“T dw = by [/ Syy(w)e dw—i—/Smy(w)e dw}
-0 —00 0

1 —lwT TWT
= go/[Sxy(—w)e + Spy(w)e™T] dw
1 T * —wT WT
= oo [195,@)eT + Sy (@) dw
1 T WT
= ;%/Szy(w)e dw (62)

e White noise: if the spectrum is flat throughout the whole frequency
range, then the correlation is proportional to the delta function of 7.

If S(w) =S = const, then

R(r) = % / S(w)e™ dw = S % / é“Tdw=S5(r).  (63)

If S;y(w) = Sy = const, then

1 7 WT 1 T WwT
Rmy(7—> - %_/ Sxy(bd>€ dw = Sxy %_/ € dw = Smy 5(7’) (64)
Here we used a formula
/ T dw = 270(T), (65)
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which is known as one of the definitions of the delta function.

Thus, if spectra of random processes are completely flat (white), then
their correlations are non-zero, only when 7 = 0.

Convolution theorem: Fourier transform of a convolution of two func-
tions is equal to a product of Fourier transforms of those functions, i.e.,

if a(1) & A(w) and b(7) < B(w), then

a(1) xb(1) & A(w) B(w). (66)
Proof -
7 a(T) = b(T) _“"TdT—/ / a(T — «) e T dadr

/ / e b(r") e " dr' dr" = A(w) B(w),

—0o0 —0O0

where we introduced transformations 7’ =7 — a and ™" = «a.

Another convolution theorem holds for a product of functions a(7) and
b(7):
1

a(T)b(r) & Py A(w) * B(w), (67)

because

1 = 7 - i A~ -
— (27-‘-)2_[0 Z.; A(w/) €ZWwa/] _ZO B(w//) ezw wa//] e—ZWT dT

8
] |

1 i : / 1"

_ / " —i(w—w'—w")T ’ogon
27T)2_/_/ A(w") B(w _/ e dT] dw’ dw
1 7T / " / "

—%_//A )o(w—w' — W) dw dw

~ L Ao B = 2 aw) B

=5 w—u) Bw)do' = —Alw w),

— o0

we used here the relation

/ e T dr = / T dr = 2m(w).
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e Shift theorem:
If a(7) & A(w), then

a(t — 1) & Aw) g0

a(1)e™” & Alw —wp). (68)
Proof :
7 a(t — 1) e “Tdr = 7 a(7') e7 T +m) qr!
= {7) a(t!)e dT/] e = A(w)e T,
and,
7 a(T)e™°T e T dr = 7 a(7)e W) dr = A(w — wp). (69)

1.2.7 Spectra of Outputs of Linear Systems

Let us call a Fourier transform H(w) of an impulse response h(t) of a linear
system as the “system function”:

oo

H(w) = / h(t) e~ dt, (70)
H(w) < h(t).

For the system function, we have
H*(w) < h*(=1),

because

H*(w) = / B (1)t dt = / B (—t)e~ ™ dt.

Now, let us consider stationary random processes as inputs of a linear
system y(t) = L[z(t)] with the impulse response h(t) and the system function
H(w).
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Expectation of the output.

o0

Ny = N / h(a) dae = m, H(0). (71)

— 00

Power spectra of the output Sy, (w) and the inputs S,,(w) are mutually
related to each other as

Syy(w) = Sea(w) | Hw) [* . (72)

Proof -

In view of the convolution theorem given in equation (66), and prop-
erties of correlations,

and, hence
Ryy(7) = Ryu(7) x h(7) x 17 (—7) & Spy(w) = Sw(w) | H(w) ‘2 .

Autocorrelations of the outputs:

* 1 T WT
F(7) = (yt+7)5"(0) = 5= [ Sulw) | H@) 2 € do,
and, in particular,

Rl©) = (90 = o= [ Sealw) | H@) P o (13)

If the impulse response h(t) is real, then

H*(w) = / h(t)e™ dt = H(—w), (74)

— o0
and, therefore, | H(w) |* is an even function of w, because

| H(~w) [*= H(-w) H*(~w) = H*(w) Hw) =[ Hw) [*. (75
Cross—power spectrum of outputs y1(t) = z1(t) * hy(t) and ys(t) =
xo(t) * ho(t) of jointly stationary inputs x(¢) and z5(¢) through two

linear systems with impulse responses hi(t) and hy(t).
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As we saw earlier in equation (52), the cross—correlation Ry, ,,(7) of
the outputs is expressed through the cross—correlation of the inputs
Ry ., (T) as

Ry (T) = Rayay (T) 5 I (7) 5 hy(—7).

Therefore, the convolution theorem in equation (66) gives us the cross—
power spectrum:

Sy (W) = Sy, (W) Hi (W) Hs (w), (76)
where Sy 4, (W) < Ry, (7) is & cross—power spectrum of the inputs.

e Cross—correlation of the outputs.

* 1 i * WT
Rye(7) =t +7)13(8) = o / Seray (W) Hi(w) Hy(w)e™ T dw,
and, hence,

Ruan®) = (n(0530) = o [ S @)1 (0) B () do (T7)

1.2.8 Two Designs of Spectrometers

As an example of applications of the theory of the stationary random process,
let us consider principles of two types of spectrometers which have been
widely used in the radio astronomy (Figures 11 and 12).

In the filterbank spectrometer (Figure 11), received voltage from a radio
source is equally fed to n identical analog narrow-band BPF’s (band—pass—
filters), which are called “filterbank” with successive center frequences vy, vs,
-+, Uy. Outputs of the BPF’s are squared and averaged by SQ (square-law)
detectors and resultant powers yield a spectral shape of the source at the
above frequencies.

—{BPF v. - >—{5Q Detector
—BPF v. |—|>—|SQ Detector
—|BPF Vs |—|>—|SQ Detector
Q> ;

——{BPF vo:—| >—{SQ Detector
_—{BPF v, - >—{5Q Detector

Figure 11: Basic design of a filterbank spectrometer.
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In the autocorrelation spectrometer (Figure 12), on the other hand, the
received voltage is first digitized by an analog-to—digital converter (A/D),
and then equally divided into two digital signals, which are fed to n multi-
pliers and integrators, one directly, and another with successive time delays
0, 7,27, -+, (n — 1)7. The resultant ‘autocorrelation’ as a function of time
delay is then Fourier transformed, and converted to a power spectrum.

—Multiplier {Integrator |—
:| Multiplier |—| Integrator |—
:| Multiplier |—| Integrator |—
:| Multiplier |—| Integrator I—

;
53 :| Multiplier |—| Integrator I—
T

Multiplier |—| Integrator I—

Figure 12: Basic design of an autocorrelation spectrometer.

Fourier Transformation

The principles of the two designs look quite different. Do they really
produce the same spectrum?

As far as the ergodicity holds, it is clear that the autocorrelation spec-
trometer must closely approximate the calculation of the power spectrum of
the input signal (received voltage) as the Fourier transform of the autocor-
relation, as we have described so far.

For the filterbank spectrometer, let us consider ¢-th narrow—band BPF as
a linear system, which has an input stationary random process x(t), which
is the received voltage in this case, an output y;(¢), and an impulse response
hi(t), corresponding to a rectangular sytem function H;(w):

27 Aw Aw
Hz(w) — V Aw g 2' v 2
0 otherwise,

where w; = 27y; is the i-th center angular frequency, and Aw is the frequency
bandwidth of the BPF. If the power spectrum of the input is S,,(w), then,
according to equation (72), the power spectrum of the output Sy, (w) is

Syy(w) = S (w) | Hi(w) |,

(Figure 13). Since, in view of the ergodicity, the time averaging in a square—
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Sxx((l)) Hi (0) ) Syy ((D)

X A® - | - A®

| |

Figure 13: Band—pass filter passes a segment of the input power spectrum.

law detector must yield the power, or the autocorrelation at 7 = 0, of the
output signal, if the averaging time is sufficiently long, we obtain

( wi(t) 2/ (w)do = 5 /sm ) | Hi(w) P d

1

This “power passed by a BPF” is nothing but a mean of the power spec-
trum of the received voltage S,.(w), involved in the spectral range w; —
% < w < w; + %. Therefore, if Aw is sufficiently narrow, and S, (w)
is continuous around w;, then we approximately have

([ 9it) %) = Seo(wi)-

Thus two spectrometers really yield the same power spectrum of the received
voltage.

This example gives us a clear feel, that the power spectrum, defined as
a Fourier transform of the autocorrelation of the input signal, is really a
“spectrum of the power” of the signal.

1.2.9 Fourier Transforms of Stationary Random Processes

So far, we have considered Fourier transformation of correlations of the sta-

tionary random processes. Now, let us proceed to considerations of the

Fourier transformation of the stationary random processes themselves.
Assume that a Fourier integral of a random process z(t) is expressed as

e}

Z(w) = / 2(t) et dt. (78)

—00
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Since z(t) is a random process in time ¢, it is natural to consider that Z(w)
is a random process in angular frequency w, i.e., it is a function of w, and its
value at any w is a random variable, which may vary from trial to trial.

If we apply the inverse Fourier transform to equation (78), we would have

2(t) = % / Z(w) " dw, (79)

i.e., we could express any random process in time t as a superposition of
infinite number of frequency components, which are themselves random pro-
cesses in angular frequency w.

Strictly speaking, however, we must be aware that the convergence of
the intrgrals in equations (78) and (79) is not, in general, guaranteed, since
the random processes may have finite amplitudes from the infinite past to
the infinite future. Of course, we could restrict the actual integration range
to =T < t < T with sufficiently large T. In fact, durations of actual
physical processes are most likely to be shorter than the age of our Universe.
However, a too strong emphasis on this point may cause difficulties when we
require stationarity to the random processes. Special integral forms are often
introduced in the literature to assure the convergence. We will, however,
just assume some kind of convergence of the above integrals, without being
heavily involved in the mathematical strictness. Instead, we will concentrate
our attentions to several simple but useful statistical relations between the
random process z(t) and its Fourier transform Z(w).

Properties of Fourier transforms of the random processes.

e Expectation of Z(w) is a Fourier transform of the expectation 7(t) of

2(t).

Proof -

Taking ensemble average of the two sides of the Fourier transformation
in equation (78), we have

(Z(w)) = / (2(t)) e dt = / n(t) e~ dt.

o If 2(¢) is a stationary random process, the expectaion of Z(w) has a
delta—function form with respect to w.
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Proof :

Since
(z(t)) = n = const,

we have

(Z(w)) = / netdt = 21 d(w), (80)

according to equation (65).

An autocorrelation of Z(w), defined as (Z(w1) Z*(ws)), is related to
a two—dimensional Fourier transform I'(wy, we) of an autocorrelation

R(tl, tg) = <Z(t1) Z*(t2)> of Z(t), which is

wla CUQ / / tla _Z (Wit -+ewatz) dtl dtQa

—00 —O0

by a formula:

(Z(w1) Z"(w2)) = T'(w1, —w2). (81)
Proof -
From equation (78),
(Zlw) 27w = [ [ (at) 2 () ) ity
- / /R(tb to) e @rtimw2t2) gty dty = T(wy, —wy)

If z(t) is a stationary random process, having a power spectrum S(w),
we have

(Z(w1) Z%(w2)) =27 S(w1) 0(w1 — wa). (82)
Proof -

Since, in view of the stationarity of z(t), its autocorrelation (z(t1) z*(t2)) =
R(ty, t2) = R(7) is a function of time difference 7 = t; —t, only. There-
fore,

<Z(u)1) z* (w2)> == / / R(tl, tg) 6_i(w1t1 —wat2) dtl dtz

—0o0 —0O0

— / / —zwlT (w1 —w2)t2 dr dtQ

—00 —0O0
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= [ rwesrar [ e,

= 27w S(w1) d(wy — wa).

o If z(t) and y(t) are jointly stationary random processes, having a cross—
power spectrum S, (w), a cross—correlation of their Fourier transforms:

[e.e] [e.e]

X(w) = / r(t)e ™ dt, and Y(w)= / y(t) e ™“tdt,
is equal to
(X (w1) Y*(we)) = 27 Sy (w1) 6 (w1 — wa). (83)
Proof -

Since the cross—correlation (x(t1)y*(t2)) = Ruy(t1, t2) = Ryy(7) is a
function of time difference 7 = t; — t5 only, we have

[e.o]

(K@) V@) = [ [ Raylts, ta) e @21 aty dry

—00 —00

= / /ny(T) eTirTmilwimwalts g gy,

= /ny(T) e~ dr / e Hwi—w2)ta gy,

= 27 Sy (w1) 6(wy — wa).

Thus, the autocorrelation and the cross—correlation of the Fourier transforms
of the stationary random processes are uniquely related to their power and
cross—power spectra by equations (82) and (83). Therefore, the Fourier trans-
forms of the stationary random processes can be regarded as useful tools for
calculating the spectra. The FX—type correlators are the realizations of this
principle.

Note that the expectation of Z(w), which is the Fourier transform of a
stationary random process z(t), has a delta—function form with respect to
the angular frequency w, that means not altogether constant in w, except for
a special case when (z(t)) = n = 0. Also, the RHS of equations (82) and
(83) are not functions of angular—frequency difference w; — wy only, because
of the dependence on w; in S(w;) and S, (w1), except for special cases of the
complete white spectra, where S(w) = const or S,,(w) = const. Therefore,
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the Fourier transforms of the stationary random processes are not wide—sense
stationary, in general, with respect to w.

1.3 The White Fringe
1.3.1 A Simple Interferometer

A radio interferometer, in its simplest form, can be illustrated as Figure 14.

V2

[multiptier |

correlator

Figure 14: A simple interferometer.

This ia a two—element interferometer consisting of idential antennas, iden-
tial receivers and a correlator, which is a combination of a multiplier and
an integrator (a time-averager). We ignore here details of receiving sys-
tems, including the frequency conversion, just regarding as if the correlation
processing is performed at RF (radio frequency) band.

Important information which is derived from interferometric observations
is the geometric delay 7,. For an infinitely distant point radio source, which
we assume in this simplified case, the geometric delay is expressed in a form:

~ D-s Dsinf

= 84
7—9 c c ) ( )

where D is a “baseline vector” connecting reference points of two antennas,
s is a “source vector” which is a unit vector directed towards the point radio
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source, c is the light velocity, and # is an angle of the source direction s from
a plane perpendicular to the baseline vector D. For simplicity, we assume
that the same wavefront of the electromagnetic wave from an astronomical
radio source arrive at two antennas with a time delay, which is equal to the
geometric delay 7,, ignoring atmospheric and other delay factors.

We assume a case when the beam centers of the two antennas are exactly
oriented towards the radio source. Also, we assume that the source direction
is close to the plane perpendicular to the baseline, i.e., § ~ 0, and the
geometric delay 7, is within a small range around zero. Also, we ignore
effects of diurnal motion of an observed radio source, just assuming that the
source is at rest or moving very slowly.

We ignore, at this stage, any contribution of the system noise, in order to
concentrate our attention to the basic characteristics of the correlated radio
source signals only.

In summary, we assume following properties for our simple interferometer:

e point—like radio source,

e identical antennas,

e identical receivers,

e correlation at RF-band,

e source diurnal motion is neglected,
e no delay other than the geometric,

e no system noise contribution.

1.3.2 Received Voltages as Stationary Random Processes

Let us assume that the received voltage v(t), as well as the electric field inten-
sity E(t) of the radio wave which generates the voltage, are real stationary
random processes, satisfying the ergodicity. Here, we used a scalar function
E(t) for the electric field intensity, since any antenna can receive only one
polarization component of the electric field intensity vector E(t). Therefore,
E(t) here stands for a single polarization component of E(t) in a plane per-
pendicular to the direction of propagation of the transversal electromagnetic
wave, which is commonly received by two antennas of the interferometer.
In actual radio astronomical observations, we usually see that the recieved
voltage oscillates around zero value and its time average is just zero, i.e.,
time invariant. Also, the outputs of the correlators, which are time-averaged
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products of the received voltages, are almost time invariant, as far as we
neglect the slow intrinsic time variability of the radio source. At the same
time, the correlator outputs vary when we artificially insert different time
delays between the two voltage time series, implying that they are functions
of the time delay (i.e., of the time difference).

Therefore, the situation, which we experience in our observations, is just
consistent with the stationarity and ergodicity assumptions.

Let us consider that the received voltage v(t) and the electric field inten-
sity E(t), generating the voltage, are related to each other by a linear system
with a real impulse response ¢(t):

(e}

vu)zlﬂﬁ*q@):l/lﬂt—aﬂﬁaﬁm. (85)

— 00

Here ¢(t) expresses the response of the antenna—receiver system to the inci-
dent radio wave, which, in particular, determines the frequency characteris-
tics of the system as a BPF (band-pass—filter) passing a limited frequency
range with a bandwidth Aw centered at wy.

As we stated above, we assume that the responses of the antenna-receiver
systems, in the two antennas of our simple interferometer, are identical, for
simplicity.

1.3.3 Cross—Correlation of Received Voltages

Let us denote the received voltages of the two antennas as vy(t) and vy(t).
Since they are generated by the same electromagnetic wave from a radio
source, but arrived at two antennas at different times due to the geometric
delay 7,, we can express them through a common electric field intensity E(t)
as:

(e}

n(t) = /E@—g—@ﬂ@&%

—00
o0

) = [ Bt -a)ge)do, (86)

—00

following equation (85). It is evident that vy (¢) and vy(t) are jointly station-
ary random processes, because they are the outputs of linear systems (here,
we assumed identical) with the same input stationary random process F(t).

Now, let us consider that v;(t) and vy(t) are fed to the correlator shown
in Figure 14. Since the correlation processing is the multiplication and inte-
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gration of the signals, the correlator output R can be modeled as

R = %_4 (s (t)dt. (87)

Of course, (R) = (vi(t)va(t)), as far as vy (t) and vq(t) are jointly stationary
random processes, and, in view of the ergodicity, R tends to (vy(t)va(t)) as
the integration time 7" increases to the infinity:

R — (R) = (vi(t)va(t)), as T — oc. (88)

Therefore, assuming that the integration time is sufficiently long, we can
approximate the output as

R = (vi(t)va(t)) = Ry, (0), (89)

where R,,,,(0) is the cross—correlation of the two jointly stationary random
processes v (t) and va(t):

Ry (1) = (01 (t)02(t — 7)), (90)

at the time difference 7 = 0.
Since vy (t) and vy (t) satisfy equation (86), we have

Fow(®) = [ [(B(t=1,—a)B(t—7=5) (@) q(3) dads

—0o0 —0O0

B / / Rpp(T — 15 — a+ §) q(a) ¢(6) dedp, (91)

—00 —0O0

where Rgg(7) is the autocorrelation of E(t):
Rpp(t) = (E(t) E(t —1)). (92)

Let us introduce the cross-power spectrum S,,,, (w) of the received volt-
ages v1(t) and vo(t), which forms a Fourier transform pair with the cross—
correlation Ry, (T), 1.€.; Ry, (T) < Sy, (w), where w is the angular fre-
quency. Using the Fourier transformation equation (55), and the shift theo-
rem given in equation (68), we have

Svva (w) - / va2 (T) e dr
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oo O

- Z [ | [ Res(r =7, = a+ B ala) q(ﬁ)dadﬁ] e dr

—0OC—00

al

/ Rpp(r') (') q(=7") e dT’] e

/ / REE(T/ —a+ ﬁ) (](Oé) Q(ﬁ) do dﬂ] e_iWT, dT/} e_i“”'g

—0OC—00

Furthermore, let us introduce the power spectrum Sgpgp(w) of the incident
electric field intensity E(t), Sgrp(w) < Rpg(7):

[e.o]

SEE(LU) = / REE(T) e_indT, (93)

and the system function Q(w) of the impulse responce ¢(t), Q(w) < ¢(t):

o

Q(w) = / g(t)e~tdt. (94)

—00

Note that Sgg(w) is a real and even function of w, since E(t) is a real process,
and also Q*(w) = Q(—w) for the real impulse response ¢(t).

Then, in view of the convolution theorem in the Fourier transformation
(see equations (66) and (72)), we obtain

Svres (W) = Spp(w) QW) Q(~w) e™™™ = Spp(w) | Qw) [* ™™, (95)

Applying the inverse Fourier transformation to this equation, we obtain
a formula for the cross—correlation R,,.,(7T):

1 7 . 1 7 ,
Roa(r) = 5= [ Sual@) e7dw = — [ Spu(w) | Q) P e ™ dw.
27 2m
(96)
Taking 7 = 0 in this equation, we obtain

1 7 ,
R = Rupis (0) = 5 / Spp(w) | QW) |2 e dw. (97)

This is an equation which gives a relation between the expectation of the
correlator output (R) = Ry, .,(0) of our simple interferometer, and the spec-
trum of the radio wave coming from an astronomical source Sgg(w), filtered
by the frequency response | Q(w) |* of the antenna-receiver systems.
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As the simplest case of the frequency response | Q(w) |?, let us assume a
rectangular filter:

G if wy— 2 < w|<w+ 22,

| Qw) [*= (98)

0 otherwise,

where wqg is the band-center angular frequency, Aw is the bandwidth in
angular frequency, and G is a constant coefficient, as shown in Figure 15. On

Ao $ Q) 1” Ao
S e i
| | .
- 0 ®o

Figure 15: Rectangular frequency response of the antenna-receiver system.

the other hand, we can assume, for a continuum spectrum source, that the
power spectrum of the radio wave Sggp(w) is flat, or “white-noise”, in the

filter passband:
Sepp(w) = S(wy) = S(—wp) = const. (99)

In such a case, from equations (97), (98) and (99), the expectation of the
correlator output R is expressed as:

R) = %

/SEE(W) | Qw) 6"'°”gdw]

g G _wo—i-%
— (WQ) §R / 6—ing dw

Aw
2
— 2V g e—z‘ong / 6—iw’7-g dw'

cos(woTy), (100)
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where R stands for the real part of the complex quantity, B = Aw/(2) is
the frequency bandwidth, and w’ is chosen to satisfy w = wy+w’. In deriving
the above equation, we used a well-known integration formula:

X
1 —ix! g .
— [ e dx =sinux.
2
—X

i sinr . ) .
A function of a form —— 1is known as “sinc function”.
T

1.3.4 Fringe Pattern Enclosed by Bandwidth Pattern

White Fringe with a Rectangular Band of 10 % of Center Frequency
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Figure 16: A normalized white fringe of a noise signal limited within a rect-
angular frequency band of width B, equal to 10 % of central frequency (solid
line). Horizontal axis shows B7,, i.e. the geometric delay multiplied by the
bandwidth. Also shown by dashed lines is the behaviour of the 1/(7B7,)
term which quickly supresses the fringe amplitude with increasing 7.

Figure (16) shows the expectation of the correlator output (R) of a white

noise signal from the radio source, which is limited within a rectangular
passband of width B, according to equation (100). The vertical axis shows
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amplitude normalized by 2 B S(wp) G, and the horizontal axis shows the ge-
ometric delay 7, normalized by 1/B, i.e., B7,. In this figure, the bandwidth
B is chosen to be equal to 10 % of the central frequency (B = 0.1wg/27).
We again have a fringe pattern cos(wo7,) enclosed by an envelope, which, in
this case, has a sinc function form, and takes the maximum value at 7, = 0.
The enclosed fringe pattern, obtained from the band-limited white noise
spectrum, is called the “white fringe”.

correlation peak
fringe spacing bandwidth pattern

il
R

fringe pattern

coherence interval

Figure 17: Technical terms describing the white fringe.

Figure 17 shows basic characteristics of the white fringe. The envelope,
enclosing the rapidly oscillating fringe pattern, is called “bandwidth pattern”.
A particular case of the rectangular band gives the sinc function pattern, as
we saw already. Other band shapes give different shapes of the bandwidth
pattern. But in any case, we always have the common feature, that the
interferometric fringes of finite amplitude are obtained within a limited range
of the geometric delay, enclosed by a bandwidth pattern, as far as the noise
signal is band—limited.

Such a limited range of the geometric delay A7g, where the fringe pattern
has finite amplitude, is called “coherence interval”, and is roughly represented
by an equation At = 2/B, where B, in a general band-shape case, is a
quantity which effectively characterizes a bandwidth.

The fringe spacing A7, in terms of the geometric delay, is determined
by a condition woAtp = 27, therefore, Atp ~ 1/1.

The peak of the bandwidth pattern, which gives a precise observable
for the geodetic VLBI, is called “correlation peak”. Of course, the peak
is the sharper, the wider the bandwidth B, and therefore the narrower the
coherence interval is (see Figure 18).
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1.3.5 Amplitude and Phase Spectra of the Correlated Signals

Equation (95) shows, that the cross—power spectrum S,,,,(w) of the voltage
signals v1(t) and wvy(t), received by two antennas, is described through the
power spectrum Sgg(w) of the radio wave coming from a source, and the fre-
quency response, assumed rectangular here, of the antenna-receiver system
| Q(w) |, as: '

Sures (W) = Spp(w) | Q) [* e7™.

Therefore, if we assume that the real, and even, power spectrum Sgg(w)

Ao A(w) Ao
1 1 0)
P(w) T
,—/
1 — —""Y@—" 1

Figure 19: Amplitude (top) and phase (bottom) spectra of the cross—power
spectrum.

is nearly constant in the receiving frequency band, the amplitude A(w) and
phase ®(w) of the cross—power spectrum, which we define as

Suors (@) = A(w)e™ ™), (101)

are expressed as:
A(w) = Spp(w) | Qw) [*= const, (102)
(W) = wry, (103)

within the passband (see Figure 19). Note, that the phase spectrum is ex-
pressed by a straight line, crossing the origin and having an inclination tan ©,
which is equal to the geometric delay 7, i.e., tan © = 7, in the present sim-
ple interferometer model. This is a general feature of the phase spectra of
the continuum spectrum sources observed by interferometers.
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1.3.6 Coherence Interval in the Sky

The coherence interval A7 = 2/B, in terms of the geometric delay, corre-
sponds to a certain angular extent Afg in the sky (Figure 20). Following the
assumption we made earlier, we consider only a region of the sky which is
close to the direction perpendicular to the baseline of an interferometer with
length D.

Figure 20: Coherence interval in the sky.

For a source in the sky, which is separated from a plane perpendicular to
the baseline by an angle 6, the geometric delay 7, is equal to

B Dsiné

Cc

Tg

, and, hence, 6 = arcsin <%) , (104)

where c is the light velocity. Therefore, the angular extent Afp is

Afp = 2 arcsin <CATB) ~ CATS _ %

2D D DB’ (105)

The coherence intervals for several values of D and B are listed in Table 1.
It is evident from this table that the coherence interval in the sky is fairly
narrow for modern interferometers, especially for VLBI. Therefore, the pas-
sive observational mode, which would just “wait for” the passage of a source
through the narrow coherence interval with 7, ~ 0, is extremely ineffective
and unrealistic, except in the “classical” systems with ~ 100 m, or shorter,
baselines and ~ a few MHz, or narrower, bandwidths. Consequently, modern
radio interferometers are usally equipped with a special mechanism, which
compensates the delay, by time—shifting one of two received signals, so that
the signals corresponding to the same wave front are fed to the correlation
processing simultaneously, as we will see later.
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bandwidth B 200 kHz | 2 MHz | 200 MHz | 2 GHz

ATp 10 psec | 1 psec | 10 nsec | 1 nsec
D =100 m > 180° | > 180° 1.°7 0.°17
Abp| D =10 km 17° 1.7 10 6."2

D = 1000 km 0.°17 1.0 0.762 0.”7062

Table 1: Coherence interval values for various baseline length D and band-
width B.

In VLBI, it is very important to know accurate positions of the radio
sources and accurate coordinates of the baseline vectors, for successful pre-
diction and compensation of the delay, which allow us to detect the fringe
within the quite narrow coherence interval.

1.3.7 Fringe Spacing in the Sky

diurnal motion

ABp

[fringe spacing

Figure 21: Fringe spacing in the sky.

Since the fringe spacing is Atp = 1/14, in terms of the geometric delay,
equation (104) gives the fringe spacing in the sky Afp, in the direction nearly
perpendicular to the baseline, as:

Ao

Abp =7 (106)

where \g = ¢/1y is the wave length at the central frequency v of the receiving
band (see Figure 21 and Table 2).
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central frequency 14 || 100 MHz | 10 GHz | 100 GHz
wave length g 3m 3 cm 3 mm
D =100 m 1.°7 1.0 6.2
D =10 km 1.0 0.”62 0.7062
D = 1000 km 0.762 0.”70062 | 0.”00062

Table 2: Fringe spacing values for various baseline length D and central
frequency vy.

The angular resolution of an interferometer is usually expressed by equa-
tion (106), since the resolution is essentially determined by the fringe spacing.

Since every radio source diurnally moves across the dense fringe pattern
in the sky with the very short fringe spacing, the phase of the cosine term
woT, in equation (100) changes very rapidly. Therefore, the correlator output
of the signals of our simple interferometer must oscillate also very rapidly.
This would make mostly impossible to integrate the multiplier output for
a duration of time, which is long enough to detect the white fringe with a
sufficiently high signal-to—noise ratio, since any simple time averaging (inte-
gration) of an oscillating signal results in almost zero signal only (Figure 22).
Therefore, modern radio interferometers are usually equipped with a special
mechanism to compensate (or stop) the rapid phase change, as we will see
later.

AAAWAWAWAWA
RVAVAVEVEVEVEY

Figure 22: What will come out, if we integrate (time average) this?

2 A Realistic Radio Interferometer

The simple interferometer, which we discussed in the previous section, was
helpful for understanding one of the most important concepts for radio inter-
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ferometry, the white fringe. Nevertheless, the simple model is far from real
modern radio interferometers in following aspects.

First, radio sources are not mere points. They usually show structures,
or intensity distributions, in the sky. One of the main purposes of the VLBI,
or radio interferometry in general, is to obtain images of the radio source
structures. But if the source is not point—like, the delayed voltage model
in equation (86), which was described through a single geometric delay of
a point source, must be no longer valid. Moreover, if the source structures
are extended, we have to take into account the beam patterns of element
antennas, as well.

Extended Source
3

Beam\\\‘ Beam
Pattern1 . Pattern 2

\% Source structure
5’ D and different
antenna-receiver
Receiver 1 Receiver 2 characteristics

®7 Lo.cal Mixer Frequer.lcy
Oscillator conversion

Instrumental Compensation of

Delay delay and phase

Multiplier change
Correlator
Integrator

v

Figure 23: A realistic interferometer.

Second, the antennas and receiving systems in a radio interferometer are
not identical, in general. Therefore, the beam patterns and the frequency
responses of the antenna-receiver systems may differ from each other, unlike
in the simple interferometer model.

Third, receiving systems in modern interferometers are usually based on
the superheterodyne design, and correlation processings are performed for IF
(intermediate frequency) signals after the frequency conversion, but not for
RF signals, as assumed in the simple interferometer model.
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Finally, we have to introduce the special mechanisms in order to com-
pensate the geometric delay and the rapid phase change in the correlator
output, as we noted in the last two paragraphs of the previous section. This
should be done so that we can always observe a radio source whenever it is
above the horizon, but not just within a very short duration of time, while
the source happenes to pass the very narrow coherence interval.

However, we still neglect, for a while, atmospheric and instrumental de-
lays, other than the geometric delay. Also, we ignore, as before, any con-
tribution of the system noise, in order to concentrate our attention to the
characteristics of the correlated radio source signals only.

Figure 23 illustrates a “more realistic” 2—element interferometer. In the
following subsections, we will examine effects of the source structure and
diffferent antenna-receiver characteristics, the frequency conversion, and the
compensation of the delay and the phase change, in turn.

2.1 Source Structure, Visibility and Intensity
2.1.1 Source Coherence Function

How the correlator output of an interferometer is related to the intensity (or
brightness) distribution of a radio source in the sky?

In order to answer to this question, we must consider how the electro-
magnetic field from a source, which is received and converted to the voltage
signal by each antenna of the interferometer, is related to the intensity dis-
tribution of the source. For this purpose, we first address ourselves to a
problem regarding properties of radio waves from an extended radio source,
namely, whether radio waves coming from different points of a radio source
are mutually correlated, or not.

Let us choose a certain direction in the source (for example, the direction
of the maximum intensity), which is denoted by a unit vector s, as a refer-
ence direction. Then a unit vector s, pointing towards an arbitrary direction
in the source, may be expressed as s = sg + o, and we can use the “offset
vector from the reference direction” o = s — 8¢, as a vector, which is almost
confined in the celestial sphere and indicates the direction s. See Figure 24
for the geometry.

As a quantity representing the electromagnetic wave from the source, we
again choose a single polarization component of the electric field intensity
E(t), to be received by the antennas. Since the source is now extended, we
denote a component of the electric field intensity, which comes from a unit
solid angle around a direction o, as e(o,t). Then the incident electric field
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Figure 24: Radio waves coming from different directions in a radio source.

from the whole source E(t) is expressed through e(o,t) as

ﬂﬂzt/eWJMQ (107)

source

where df2 is an infinitesimal solid angle element. Now, let us consider a
cross—correlation of electric field components e(o,t) and e(o’,t'), coming
from different directions o and o', and taken at different times ¢ and ¢':

(e(a,t) e(a’, 1)),

(see Figure 24).

Assuming again that e(o,t) and e(o”,t’) are jointly stationary random
processes, we express the cross—correlation as a function of time difference
T=t—1t"

Ao, 7) = (el 1) el ). (108)
This function v(o, o', 7) is called “source coherence function”.

Using this source coherence function, we define a cross—correlation coef-

ficient , which is called “normalized source coherence function”:

1,0’ 7) (109)

IYN(O-v 0-,77—) == 9
Ve, a,0)1y(a,a,0)

(here, we assume that the expectation of the electric field (e(o,t)) = 0, and,
therefore, the cross—correlation is equal to the cross—covariance). According
to the general property of the cross—correlation coefficient, the normalized
source coherence function always satisfies

0<[w(o,0',7)[< 1.
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Now we use following definitions.

1. Radio waves from different directions o and o’ are called “completely
coherent” if | yy(o,0',7) |= 1 for any 7, and “completely incoherent”
if | yn(o,0’,7) |= 0 for any 7.

2. A radio source is called “coherent” if radio waves from any different
directions o and o’ in the source are completely coherent, and “inco-
herent” if the waves are completely incoherent. In all other cases, the
radio source is called “partially coherent”.

If someone puts many transmission antennas in a town, and broadcasts a
TV programm, then any “poor-reception—level” problem would simply dis-
appear. Instead, however, we would suffer from a serious “ghost” problem,
since TV signals from different antennas are mutually coherent. The “ghost”
images would drastically change when we slightly shift or rotate our TV re-
ception antenna to an extent, comparable with the wavelength of the TV
signal. Therefore, it would even become difficult to know directions of trans-
mission antennas in the easy way, by just rotating the reception antenna
and watching the screen. But if the TV broadcasting is turned off, and only
incoherent (independent) noises are emitted from transmission antennas, it
would get much easier to know their directions.

Fortunately, most of actual astronomical radio sources are known to be
incoherent, and, therefore, can be imaged relatively simply. This is because
radio waves emitted from the source regions are just mutually independent
noises generated by random microscopic processes occuring there. Therefore,
in following discussions, we assume that radio sources are incoherent.

Then, the source coherence function must be expressed as

v(o,0',7)=~(o,7)i(0 — '), (110)

since radio waves from directions o and o’ are correlated only when o = o”.
The function (o, 7), defined by equation (110), is called “self-coherence
function”.

2.1.2 Power of Electric Field Incident from a Certain Direction

The autocorrelation of the electric field E(t) is expressed through the self—
coherence function as:

(E(t)E(1')) = / / (e(a, )e(o, 1)) ALY

source

— [ | oo —ohai = [ (o, 7)de. (111)

source source
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Therefore, we obtain, for a mean square value of the electric field E(t),

(B(t)?) = / (o, 0)dS2, (112)

source

which implies that (o, 0) is a “density per solid angle” of the mean square
electric field in the direction of o .

Consequently, if we consider a total electric field vector E(t), which comes
from a small solid angle element A2 towards a direction o, and includes both
of the two independent polarization components, then its mean square value
(or power) is related to the self-coherence function at 7 = 0 as:

1
5 (| B() ) =(e,0) AQ, (113)
where the coefficient 1 /2 corresponds to the fact that (o, 0) includes only
a single polarization component of the electric field.

2.1.3 Poynting Flux

Now we proceed to the relation between the incident electric field and the
source intensity (or brightness) distribution. First, we consider a quantity,
characterizing the incident electromagnetic wave, which we call “Poynting
flux through a cross section”.

Let us consider the Poynting vector S(o) of an electromagnetic wave,
which comes from the same small solid angle element AQ) towards the di-
rection o, as in equation (113). Let AQ be small enough that the wave is
well approximated by a superposition of monochromatic plane waves prop-
agating along the same direction, with individual frequencies contained in a
finite bandwidth of the incident wave.

As we saw in Chapter 2, the Poynting vector S,, (o) of a monochromatic
plane wave is given, in terms of the corresponding electric field intensity
E, (o), by an equation:

1
Sm(@) = Zn | En(o) % (114)
where Z is the intrinsic impedance of the medium, and n = —s = —(s¢ + o)

is a unit vector along a direction of the wave propagation.

The term | E,,(o) |?, in equation (114), corresponds to a power of the
electric field, contained within an infinitesimally narrow frequency band of
a monochromatic plane wave. Such a power is equal to the power spectrum
at the frequency of the band, multiplied by the bandwidth, as we discussed
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in subsection 1.2.8. On the other hand, the power | E(o) |?, contained in a
finite bandwidth, is simply equal to the integral of the power spectrum over
the bandwidth. Hence, we obtain the power | E(o) |?, by just summing up
all monochromatic plane wave components | E,,(o) |* over the bandwidth:

| E(o) ’=3_ | En(o) |*.

Meanwhile, the Poynting vector S(o), with the finite bandwidth, is a
vector sum of all monochromatic plane wave components S,,(o):
S(o)=> Swm(o).
Therefore, an equation, with the same form as the one in the monochro-

matic plane wave case, given in equation (114), holds also for the Poynting
vector S(o) and the power of the electric field | E(o) |?, having the finite

bandwidth: .
S(o) = Ak | E(o) |*. (115)

Let us now consider “Poynting flux through a cross section”, or simply
“Poynting flux”, which we define as equal to the energy of the electromagnetic

wave passing through a certain cross section of unit area, per unit duration
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Figure 25: Poynting flux through a cross section.
of time. If we denote a unit vector normal to the cross section as IN, the
Poynting flux of the wave coming from the direction o is given by a projection
of the Poynting vector on the direction IN:

1 2
S(o) - N = 7 | E(o) |” cosb, (116)
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where # is an angle between the normal unit vector IN of the cross section
and the direction n of the wave propagation (see Figure 25).

Now we consider the Poynting flux S of the wave not only from a small
solid angle towards o, but from the all source area:

S=3Y S(e,) N = %Z | E(oy) |2 cos b, (117)

where Z means a summation of all small solid angle elements towards direc-
n
tions 1,09, -+, 0,, -, covering the whole source area, and 6,, is an angle

between the normal to the cross section IN and the direction of propagation
n, = —(so+ o,).

Combining this equation with equation (113), we obtain an equation re-
lating a mean Poynting flux to the self-coherence function:

(S) = %Z<| E(o) [2) cos b, — %Zv(a‘n,O) cosO A, (118)

n

where AS),, is a small solid angle element towards a direction o,,. If we replace
the summation, with respect to the small solid angles, by an integration, the
relation between the mean Poyinting flux (S) and the self-coherence function
v(o, T) is given by:

(S)=—= / v(o,0) cos OdSQ. (119)

source

If we further introduce the Fourier transform 7(o, w) of the self-coherence
function v(e, 7) in the angular frequency w space, i.e., y(o,7) < (o, w):

F(o,w) = /v(a',r)e_i”dT, (120)
.1 = £ [Hewea
v(o,T) = o Ao, w) e dw,
then, we have
1.0) = [ Flo.w)dv,

where v is a frequency corresponding to the angular frequency w, i.e., v =
w/(2m). Since Fourier transform of a real function is an even function of the
frequency, v(o,0) is also given as:

v(o,0) = 2/'?(0',w) dv. (121)
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Therefore, the mean Poynting flux in equation (119) is now given as:

<s>:—7/ (o, w) cos § ddw. (122)

0 source

2.1.4 Electric Field and Radio Source Intensity — Electromag-
netics and Astronomy

As we saw in Chapter 1, results of radio astronomical observations are char-
acterized by a number of quantities, such as, “intensity” I,, “spectral flux
density” S,, and “power flux density” S. These quantities are phenomeno-
logically defined in astronomy. For example, the intensity is defined as “the
quantity of radiation energy incoming from a certain direction in the sky,
per unit solid angle, per unit time, per unit area perpendicular to this di-
rection, and per unit frequency bandwidth with center frequency v”. As we
see, no electromagnetic quantity, such as electric field intensity E, or volt-
age v, appears in such a phenomenological definition. Therefore, we must
precisely define a certain relationship between the electromagnetic and ra-
dioastronomical quantities, in order to describe radioastronomical results in
terms of the electromagnetic quantities, which we actually measure in our
radio telescopes.

Such a relationship was defined by IEEE (Institute of Electrical and Elec-
tronics Engineers) in 1977. According to the definition, the power flux density
in astronomy is equal to the time average of the Poynting vector in electro-
magnetics.

The power flux density S is defined in astronomy as “the quantity of
radiation energy, over the whole frequency range, incoming through a cross
section of unit area, per unit time”. This quantity is related to the spectral
flux density S,, and to the intensity I, as:

S = 75,, dv = 7 / I, (o) cosfdQ2dy, (123)
0 0 source

because the spectral flux density is defined as “the quantity of radiation
energy incoming through a cross section of unit area, per unit frequency
bandwidth, and per unit time”, and the intensity is defined as we saw above.

Since the power flux density is given with respect to a certain cross section
of unit area, we interpret the “Poynting vector”, in the IEEE definition as a
Poynting flux, through the cross section.

Then, the definition of IEEE (1977) requires that the mean Poynting flux
(S) must be equal to the power flux density S:

(S) =S, (124)
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since, in view of the Ergodicity, the time average must be equal to the statis-
tical mean, provided that the averaging time is sufficiently long. Therefore,
from equations (122) and (123), we have

/ / I,(o) cosOdQYdv = %/ / (o, w) cos O dQ dv. (125)
0 source 0 source

Generally speaking, equal integrals do not necessarily mean equal inte-
grands, of course. However, in our case of the stationary random signal from
an incoherent source, we can equate integrands of the both sides of equation
(125). In fact, the total power of the electric field intensity is simply equal
to a sum of contributions from all elements in frequency bands and spa-
tial solid angles. To make this point more evident, let us imagine a virtual
source which emits radiation only in limited frequency and spatial solid-angle
ranges of the actual radio source. The average Poynting flux and the power
flux density from this virtual source are equal to those of the actual source
in the respective frequency and solid—angle ranges. They must be expressed
through the self-coherence function and the intensity, just in the same forms
as those given in equations (122) and (123), but with limited frequency and
solid—angle ranges of the integrations. Since the definition of IEEE (1977)
requires their equality, for this virtual source as well, equation (125) must

hold for arbitrary frequency range Ar and arbitrary spatial solid—angle range
A, ie.,

//L,(a') COSQdeV:%//’?(O',w) cos 6 dQ2 dv,

AvAQ AvAQ

which implies that the integrands must be equal to each other. Therefore,
we have

I(o) = %a(a, w). (126)
This is a relation between the source intensity distribution and the spectrum
of the self-coherence funtion, which is the density per solid angle of the power
of the incident electric field, as we saw before. Thus, we succeeded to relate
the source intensity distribution in astronomy to the incident electric field in
electromagnetics.

2.1.5 Field of View of a Radio Telescope

The incident electric field is converted to the voltage in a radio telescope an-
tenna, and this voltage is actually processed in our detecting devices (square—
law detectors, or correlators). Then, how can we relate the received voltage
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v(t) to the source intensity distribution? Here, we must take into account
that an antenna collects electric fields, coming from different directions in a
radio source, weighting them according to its beam pattern, specifically the
voltage reception pattern, which we saw in Chapter 2. This “field of view”
effect must be properly corrected for, prior to infering the source intensity
distribution from detected signals (Figure 26).

Voltage reception pattern

v(t)

Figure 26: Voltage reception pattern.

In order to consider this problem, it is convenient to move from the time
domain to the frequency domain, since, as we saw in Chapter 2, the beam
pattern of an antenna is a function of frequency (the beam width is roughly
proportional to v~ 1).

Let us consider Fourier transforms é(o, w) and o(w) of the single polar-
ization component of the electric field intensity e(o, t), coming from a unit
solid angle of direction o, and the received voltage v(t), respectively.

[e.e]
élo,w) = / e(o, t)e ™“dt, (127)

—00
o0

iw) = / (t)e " tdt. (128)

—00

Since we assume that the electric field intensity e(o,t) and the received
voltage v(t) are stationary random processes, these are examples of the
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Fourier transforms of stationary random processes, which we discussed in
subsection 1.2.9.

Without being involved in details of electromagnetics on wave reception,
we just assume that the received voltage at a certain frequency is proportional
to incident electric field intensity collected by the antenna beam at the same
frequency. Then, we introduce the voltage reception pattern Q(o, w) as a
function relating v(w) and é(o, w) through an equation:

W= [ o, w)Qe,w)d. (129)
Note that the voltage reception pattern thus defined has a dimension of
length (unit of voltage is V and unit of electric field intensity is Vm™!).
The voltage reception pattern is, in general, a complex quantity, since the
reception process might be associated with some energy dissipation.

2.1.6 Power Pattern of a Receiving Antenna

Let us now establish a relationship between the voltage reception pattern,
as defined in equation (129), and the power pattern of a receiving antenna,
which we empirically introduced in Chapter 2. Although this is a topic
related to a single—dish radio telescope, following discussions will serve as
useful preparations for further considerations of interferometers.

If we denote a resistance in the circuit of the receiving system as R, then
averaged power W and received voltage v(t) are related to each other by an
equation: ()

v
W = R
Introducing an autocorrelation R, (7):

Ry (1) = (u(t) v(t)), (131)

and power spectrum S, (w):

(130)

Spu(w) = / Ry ()" dr, (132)

Ry(1) = %/va(w)emdw, (133)

of the received voltage v(t), we reexpress equation (130) as

e}

/ S (w) dv. (134)

0

_ Bw(0) _
W= S =

Do
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Hence, the power per unit frequency bandwidth W,, which satisfies

W= [W,av,
0
is given by )
W, = ﬁSm(w). (135)

Now, let us express the power spectrum S,,(w) in terms of the incident
electric field intensity. For this purpose, we first calculate the autocorrelation
of the Fourier transform o(w) of the received voltage v(t). In view of equation
(129), we have

(5(w)T (W) = / / (#(0, )& (0", W) Q(0r,w)Q* (o, )Y . (136)

Here, the cross—correlation (é(o, w)é*(o’, w')) of the Fourier transforms of
the incident electric field intensities, must be in a form:

(é(o, w)e* (o', W) =21(0, o', W) 0(w — W), (137)

since we assume them as stationary random processes, which satisfy equation
(83). In the right hand side of equation (137), we introduced a cross—power
spectrum (o, o/, w) of the electric field intensities, which is the Fourier
transform of the source coherence function (o, 6’', 7), as defined in equation
(108).

Since we assume an incoherent source, the source coherence function is
expressed through the self-coherence function ~(o, 7), as given in equation
(110). Therefore, the cross—power spectrum must be given as:

(o, o', w) =9(o, w)d(o — o). (138)
Hence, equation (137) is rewritten as:
(e(o,w)e*(a’,u")) =219(o,w)d(o — 6')d(w — ). (139)
Inserting this equation to equation (136), we obtain

(0(w)o* (W) = 27 [ / Flo,w) | Qlo,w) [* d| d(w — ). (140)

ource

Now, on the other hand, the autocorrelation (0(w)0*(w’)) must also be
expressed through the power spectrum S,,(w) of the voltage as:

(0(w)0* (W) = 2w Sy (W) (w — W), (141)
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in view of equation (82), which is a general property of Fourier transforms
of the stationary random processes. Thus, from equations (140) and (141),
we obtain

Suw@) = [ A.w) | Qlo.w) | s, (142)

source

or, taking into account equations (126) and (135),

W, 2R/ o) | Q(o,w) |2 dS. (143)

source
Equation (143) must be equivalent to the equation

WV:%AG / 1(0) Po(c)d, (144)

source

which we introduced in Chapter 2, in order to express the power per unit
bandwidth received by an antenna with a normalized power pattern P, (o)
and an effective aperture A.. Noting again, that we can select arbitrary solid
angle as the source range, we can equate integrands of equations (143) and
(144), to obtain

| Qo,w) = —A Fu(o). (145)

This is the relation between the voltage receptlon pattern and the normalized
power pattern.

From equations (126) and (145), the power spectrum of the received volt-
age in equation (142) is now given as:

Sm;(w):iAe | L) Pu(o)as (146)

source

2.1.7 New Dimensions of