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1 Fundamentals of Radio Interferometry

1.1 Two Explanations of VLBI

Two quite different explanations on the principles of Very Long Baseline
Interferometry (VLBI) are given in the literature. The two alternative ex-
planations are illustrated in Figure 1.

VLBI
VLBI

Figure 1: Receptions of noise (left) and monochromatic wave (right) with
VLBI. This picture is based on a drawing originally provided by Dr. Kat-
suhisa Sato.

1.1.1 VLBI System

The VLBI system itself is described in almost the same way in these two
explanations:

Two or more antennas are located at distant stations. They ob-
serve the same radio source at the same time. The observed data
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are recorded on magnetic media, such as magnetic tapes, with
accurate time marks generated by independent, but highly sta-
ble and well synchronized, clocks (or, better to say, frequency
standards). The recorded media are sent to a correlation center,
where they are played back and mutually multiplied and averaged
(integrated) for some duration of time. This “multiplication and
integration” procedure is called “correlation processing”.

The geometry of the observation is also presented in a similar way:

The radio wave from the same radio source must travel slightly
further to reach antenna ­ (right hand one in Figure 1) than
antenna ¬ (left hand one), with a small time delay τg. The delay
τg is determined by the geometric configuration of the antennas
and the radio source, and hence it is called the “geometric delay”.

The difference begins with the treatment of the signal from the radio
source.

1.1.2 “Geodetic” Explanation — Noise Approach

One explanation, shown in the left panel of Figure 1, which is favored in
geodetic VLBI, regards the signal as a random noise time series.

If we simply multiply and average the two played–back data
streams recorded at the same time, we must get a nearly zero
result in most cases, since we are in effect averaging products of
two random noise time series, which is also random noise, with all
possible positive and negative values. But if, and only if, we shift
the playback timing of the record from the antenna ­ exactly
by the geometric delay τg, while keeping the playback timing of
the record from the antenna ¬ unchanged, then the noise pat-
terns from the same source in the two records ¬ and ­ coincide.
Therefore, the product of the two time series always gives posi-
tive values (since plus times plus is plus, and minus times minus
is also plus) and the integration yields some finite positive value.
Thus, we “get the correlation” of the two records. By carefully
adjusting the time shift value so that the maximum correlation
is obtained, we precisely determine the geometric delay with an
accuracy of 0.1 nsec (10−10 sec) or better, which is sufficient to
determine the plate movements of the continents with typical
speeds of a few cm / year.
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1.1.3 “Astrophysical” Explanation — Monochromatic Wave Ap-
proach

Another explanation, shown in the right panel of Figure 1, which is favored in
astronomical VLBI for very high angular resolution imaging of radio sources,
regards the signal as a monochromatic sine wave.

Two waves from the same source with an angular sky frequency ω
arrive at two antennas, giving rise to sinusoidal oscillations with
a small time offset τg due to the geometric delay. Therefore, the
played–back data records from antennas ¬ and ­ are propor-
tional to sin(ωt) and sin(ω(t − τg)), respectively. Their product
is then proportional to

sin(ωt) sin(ω(t− τg)) =
1

2
{cos(ωτg) − cos(2ωt− ωτg)}. (1)

It is clear that the contribution of the rapidly oscillating second
term in the right hand side of equation (1), at a frequency twice
as large as the sky frequency, is almost nullified after time aver-
aging (integration) over some duration. Therefore, only the first
term, which is proportinal to cos(ωτg), is left after the correlation
processing.

This term expresses a sinusoidal interferometric fringe pattern on
the sky, because the argument ωτg varies with the source direc-
tion in the sky. In particular, since ωτg = 2πcτg/λ, where c is the
light velocity, and λ = 2πc/ω is the wavelength, the fringe pattern
reverses its sign when the path length difference cτg changes by
a half wavelength λ/2, as expected from the standard theory of
interferometry. The angular distance corresponding to the sepa-
ration between two successive peaks of the fringe pattern is called
the “fringe spacing”. If the radio source is more extended than
the fringe spacing, contributions from various elements of the
source are mutually compensated in the correlation processing,
due to the different signs of the fringe pattern over the extended
source. Therefore, the strength of an extended radio source is
significantly diminished in the VLBI output. If the source is suf-
ficiently compact compared with the fringe spacing, on the other
hand, the amplitude of the source strength is almost the same
as what is measured by a single dish radio telescope. Thus, the
VLBI output contains information on the source structure. By
analysing the VLBI data obtained with various fringe patterns,
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we can obtain a detailed image of the source structure, with sur-
prisingly high angular resolutions of 1 milliarcsecond, or better.

Each of these two explanations, if examined separately, seems clear and
internally consistent. But it looks as if they are explaining completely difer-
ent observational technologies, having no common feature at all. Neverthe-
less, they are the explanations of the same VLBI instrument, observing the
same radio source, with the same antennas, receivers, frequency standards,
magnetic tapes, and correlators. Then, how can we understand the two ex-
planations from a unified point of view?

1.1.4 Superposition of Monochromatic Waves

Both of the above two explanations deviate from reality on the same point,
but in opposite directions. This point is the spectrum of the received signal.

The noise approach implicitly assumes that the spectrum of the signal
is white, i.e. the amplitude of the spectrum is finite, and more or less con-
stant, in a very wide range of frequency. While this assumption may not
be too bad for the radio wave propagating in space, it is certainly not valid
for the received signal, which must be band–limited due to the frequency
characteristics of the optical and receiving systems of element antennas.

The monochromatic–wave approach, on the other hand, assumes an in-
finitely narrow bandwidth, when it talks about a wave having a certain fre-
quency. But this is, of course, far from the reality (Figure 2).

White spectrum in ’geodetic’ explanation. Line spectrum in ’astrophysical’ explanation.

But the reality is a ’band-limited white spectrum’.

ω ω

ω

.

Figure 2: Different source signal spectra assumed in the two explanations.
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So, what will come out, if we take a more realistic picture, by summing up
the monochromatic waves with different frequencies, spread within a certain
bandwidth? Figure 3 shows an answer.
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Combined Cosine Fringe Patterns with Slightly Different Frequencies

Figure 3: Fringe patterns of 11 monochromatic waves with slightly different
frequencies within a bandwidth which is 10 % of the central frequency (left),
and their superposition (right).

Here, we summed up 11 fringe patterns of monochromatic waves (left
panel of Figure 3), which have slightly different frequencies, distributed at
even intervals within a bandwidth B, centered at ν0 = ω0/2π, to generate
the superposed pattern shown in the right panel of the same figure. The low-
ermost curve, in the left panel of Figure 3, shows the fringe pattern cos(ωlτg)
with the lowest angular frequency ωl = 2π(ν0 − B/2), while the uppermost
one shows the fringe pattern cos(ωuτg) with the highest angular frequency
ωu = 2π(ν0 +B/2).

The horizontal axes of both panels in Figure 3 show the geometric delay
τg, multiplied by the bandwidth B, within a range of −2 ≤ Bτg ≤ 2. We took
the center of the horizontal axis at τg = 0, since the noise approach predicts
that the finite correlation is obtained only when the playback timing of one
record is shifted by the geometric delay. This shift is made to align the two
records, as if the same wave front is received at the same time by the two
antennas. This is obviously equivalent to effectively reducing the geometric
delay to zero. Therefore, we assume the simplest case, where the source
direction is nearly perpendicular to the baseline, so that τg ' 0 from the
beginning.

We assumed here that the bandwidth is equal to 10 % of the central
frequency (ν0 = 10B).
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1.1.5 Fringe Pattern Appears within an Envelope

The right panel of Figure 3 shows a rapid oscillation, enclosed by a more
slowly varying envelope. The rapid oscillation has 10 peaks and valleys,
within an interval of ∆(Bτg) = 1. The number 10 here is nothing but
the ratio ν0/B. So, this corresponds to the fringe pattern cos(ω0τg) at the
central angular frequency ω0 = 2πν0, as expected in the monochromatic–
wave approach.

But the fringe pattern here does not have a constant amplitude. Instead,
it is enclosed by an envelope which takes a maximum value at τg = 0, when
the two time series, obtained from the same source with two antennas, are
most coincident with each other. This reminds us of the explanation of the
correlation result in the noise approach.

1.1.6 Peak of the Envelope
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Figure 4: Superposed fringe patterns of 100 monochromatic waves, with
slightly different frequencies, contained within a bandwidth equal to 10 % of
the central frequency.

In order to see the point more clearly, we make our model still closer to
an actual continuum spectrum, by increasing the number of monochromatic
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waves to 100, but keeping the same bandwidth (B = ν0/10), and show
the superposed fringe patterns over a wider range of the horizontal axis:
−20 ≤ Bτg ≤ 20. The result is given in Figure 4.

Now it is clear that the correlation result of the superposed monochro-
matic waves has sufficiently large amplitude only within a small range of the
geometric delay around τg = 0, which is roughly given by −1/B ≤ τg ≤ 1/B.
Although there are a number of sidelobes due to the finite bandwidth, the
amplitude of these sidelobes rapidly decreases with increasing |τg|. Therefore,
Figure 4 is actually quite close to what is expected in the noise approach.

As a matter of fact, in a standard procedure for geodetic VLBI, the peak
position of the envelope of the fringe pattern, such as the one shown in Figure
4, is searched by effectively shifting the playback timing of one record against
the another. The peak is obtained at the time shift value which makes the two
records most coincident, as if the same wave front was received at the same
time by the two antennas. The best time shift value thus obtained yields an
estimate of a quantity called the “group delay”, which will be explained later
in more detail. After some corrections for systematic effects, the group delay
serves as a good estimate of the geometric delay, which is further analysed
to obtain scientific results in geodesy, geophysics, and astronomy.

Since the horizontal axis of the Figure 4 stands for Bτg, the larger the
bandwidth, the narrower the envelope is, in terms of the geometric delay
τg. Therefore, the accuracy (or statistical error) of determination of the
geometric delay in geodetic VLBI will be proportional to 1/B. Also, the
accuracy must be inversely proportional to the signal–to–noise ratio S/N of
the observation, since the higher the S/N , the finer we can determine the
peak position of the envelope. Although we do not know the exact number of
the proportinality coefficient yet, we just assume that the coefficient is close
to 1, for the purpose of a rough estimation.

So, if the bandwidth B is 500 MHz and the S/N is 20, then the expected
accuracy is around

1

(S/N)B
=

1

20 × 5 × 108
= 10−10 = 0.1 nsec.

Therefore, we can already understand, at least qualitatively, how a 0.1 nsec
accuracy is achieved in geodetic VLBI.

1.1.7 Fringe Pattern Enclosed by the Envelope

Now, as an opposite extreme, let us adopt a narrower bandwidth B = ν0/40,
compared with the central frequency ν0, and look at a narrower range:
−0.2 ≤ Bτg ≤ 0.2. The result is given in Figure 5, which clearly shows
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Figure 5: Superposed fringe patterns of monochromatic waves, with slightly
different frequencies, contained within a bandwidth equal to 2.5 % of the
central frequency.

the fringe pattern cos(ω0τg), at the central angular frequency ω0 = 2πν0 of
the band, which is quite similar to the one expected in the monochromatic–
wave approach.

Therefore, we can conclude that the two explanations are talking about
two extreme cases, corresponding to the very wide and very narrow band-
widths, of a common signal, which is composed of the fringe pattern at the
central frequency enclosed by the envelope pattern, whose sharpness is de-
termined by the bandwidth. Geodetic VLBI uses the envelope pattern to
determine the peak position, where the signals obtained at two antennas are
most coincident with each other, to get a good estimate of the geometric
delay τg. VLBI source imaging uses the fringe pattern, which appears within
a limited central range of the envelope pattern, to derive the high angular
resolution structures of astronomical radio sources. Both tasks can be done
with the same VLBI telescope.

Although we could obtain, at least qualitatively, a unified view on the
apparently quite different two approaches, the above discussion assumed the
ensemble of a finite number of monochromatic waves, which are still not
very realistic. More rigorous treatment of the signals with band–limited
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continuum spectra can be obtained in the so–called “white fringe theory”
(e.g., Thompson, Moran and Swenson, 2001), which is based on the statistical
theory of the stationary random processes.

1.2 Elements of Stationary Random Processes

The radio waves coming from astronomical sources are mostly generated by
chaotic processes occuring in the source regions. For example, the thermal
radiation is caused by the thermal random motions of the atoms, molecules
and free electrons, while the synchrotron radiation emerges from the random
explosive processes, which accelerate relativistic electrons in magnetic fields.
Hence, the electromagnetic fields, or the voltages in the receiving systems,
associated with the cosmic radio waves, mostly show characteristics of the
Gaussian random noise time sereis, as the “geodetic explanation” assumed.
A mathematical tool, which well describes such a random noise time sereis,
is the statistical theory of the stationary random processes. Therefore, we
briefly introduce here basic elements of the theory, to the extent which will be
needed in following discussions. For deeper understanding, one can consult
with standard textbooks, for example, “Probability, Random Variables, and
Stochastic Processes, 2nd Edition” by Athanasios Papoulis (1984) .

(Stationary) Random Process

Spectroscopy

Correlation
processing

Polarization
Receiver 
sensitivity

Digital 
sampling

Data analysis

Statistical 
physics

Theory of
turbulence

Reduction of
experiments

Information
theory

Economic
forecasting

Trends in
population

Quality
control

Figure 6: Statistical theory of random processes is a powerful tool for a
variety of scientific disciplines.

The statistical theory of the random (or Stochastic) processes has wide
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applications to many disciplines of radio astronomy, as well as other natural
and human sciences, as illustrated in Figure 6.

In the antenna theory, the basic framework was the electromagnetics,
and the vector algebra was used as the main mathematical tool. In the
theory of radio interferometry, however, we will no longer newly deal with the
electromagnetics. Instead, we will intensively use the theory of the stationary
random process as the fundamental tool for the mathematical development
of the theory.

1.2.1 Basic Concepts

Random (or Stochastic) Process

A process x(t) is called “random (or Stochastic) process”, if it is a function
of time t, and, if its value x(t) at any time t is a random variable, i.e., may
vary from trial to trial (see Figure 7).

If we characterize each trial of an experiment by an outcome ζ of the
experiment, the random process can be represented as a function of both t
and ζ, i.e., as x(t, ζ).

x(t)

t

trial 1

trial 2

trial 3
trial 4
trial 5

0 t

Figure 7: A random process is a function of time whose value at any time t
is a random variable.

The random process is a mathematical model of any time–varying and,
in general, deterministically unpredictable process. The properties of the
random process are usually described in terms of statistical quantities, such
as probability distribution, probability density, expectation, correlation, co-
variance, etc.
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Probability Distribution and Probability Density

Let us first consider a real random process x(t).
Let us denote a probability for x(t) at a specific time t not to exceed

a certain number x, as P{x(t) ≤ x}. Also, let us denote a probability for
occurence of multiple events, x(t1) not to exceed x1, x(t2) not to exceed x2,
· · ·, and x(tn) not to exceed xn, as P{x(t1) ≤ x1, x(t2) ≤ x2, · · · , x(tn) ≤
xn}.

Now, the first–order probability distribution F (x; t) of the random pro-
cess x(t) is defined as:

F (x; t) = P{x(t) ≤ x}. (2)

Likewise, the second–order probability distribution F (x1, x2; t1, t2) is de-
fined as:

F (x1, x2; t1, t2) = P{x(t1) ≤ x1, x(t2) ≤ x2}, (3)

and the n–th–order probability distribution F (x1, · · · , xn; t1, · · · , tn) is de-
fined as:

F (x1, · · · , xn; t1, · · · , tn) = P{x(t1) ≤ x1, · · · , x(tn) ≤ xn}. (4)

On the other hand, the first–order probability density f(x; t) of the ran-
dom process x(t) is defined as a derivative of the distribution F (x; t) with
respect to x:

f(x; t) =
∂F (x; t)

∂x
. (5)

Since, by definition,

∂F (x; t)

∂x
= lim

∆x→0

F (x+ ∆x; t) − F (x; t)

∆x
,

the probability density has a meaning:

f(x; t) = lim
∆x→0

P{x(t) ≤ x+ ∆x} − P{x(t) ≤ x}
∆x

= lim
∆→0

P{x < x(t) ≤ x + ∆x}
∆x

. (6)

Likewise, the second–order probability density f(x1, x2; t1, t2) is defined
as:

f(x1, x2; t1, t2) =
∂2F (x1, x2; t1, t2)

∂x1∂x2
, (7)
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and the n–th–order probability density f(x1, · · · , xn; t1, · · · , tn) is defined as:

f(x1, · · · , xn; t1, · · · , tn) =
∂nF (x1, · · · , xn; t1, · · · , tn)

∂x1 · · ·∂xn
. (8)

Generally speaking, if t is continuous, we need infinite number of various
orders of probability distributions, in order to properly describe a random
process. In many practical cases, especially in cases of stationary random
processes, however, it is sufficient to take into account first– and second–
order distributions only, as we will see later.

Following general properties are satisfied for probability distributions and
densities, as evident from their definitions:

• F (∞; t) = 1,

• F (x1; t1) = F (x1, ∞; t1, t2),

• f(x; t) ≥ 0 (i.e., F (x; t) is a monotonically increasing function of x),

•
x2
∫

x1

f(x; t) dx = P{x1 < x(t) ≤ x2},

• f(x1; t1) =

∞
∫

−∞

f(x1, x2; t1, t2) dx2,

•
∞
∫

−∞

f(x; t) dx = 1.

Now, let us consider a case, where a random process z(t) is a complex
process:

z(t) = x(t) + i y(t),

where a real part x(t) and an imaginary part y(t) are real random processes,
and i is the imaginary unit.

The probability distribution of the complex random process z(t) is defined
by the joint probability distribution of x(t) and y(t). Thus, the n–th–order
probability distribution is defined as:

F (z1, · · · , zn; t1, · · · , tn) = F (x1, · · · , xn; y1, · · · , yn; t1, · · · , tn)
= P{x(t1) ≤ x1, · · · , x(tn) ≤ xn, y(t1) ≤ y1, · · · , y(tn) ≤ yn}, (9)

and the n–th order probability density is defined as:

f(z1, · · · , zn; t1, · · · , tn) = f(x1, · · · , xn; y1, · · · , yn; t1, · · · , tn)

=
∂2nF (x1, · · · , xn; y1, · · · , yn; t1, · · · , tn)

∂x1 · · · ∂xn ∂y1 · · · ∂yn
. (10)
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When we have two complex random processes x(t) and y(t):

x(t) = xr(t) + i xi(t),

y(t) = yr(t) + i yi(t),

where real parts xr(t) and yr(t), and imaginary parts xi(t) and yi(t), are all
real random processes, we introduce joint probability distributions and joint
probability densities of the two complex random processes.

For example, the first order joint probability distribution of the complex
random processes x(t) and y(t) at times t1 and t2, respectively, is

F (x; y; t1; t2) = F (xr, xi; yr, yi; t1; t2)

= P{xr(t1) ≤ xr; xi(t1) ≤ xi; yr(t2) ≤ yr; yi(t2) ≤ yi}, (11)

and the corresponding joint probability density is

f(x; y; t1; t2) = f(xr, xi; yr, yi; t1; t2)

=
∂4 F (xr, xi; yr, yi; t1; t2)

∂xr ∂xi ∂yr ∂yi
. (12)

Expectation (or Ensemble Average)

Expectation (or ensemble average) ηz(t) of a complex random process
z(t) = x(t) + iy(t) at time t is defined as:

ηz(t) = 〈z(t)〉 =

∞
∫

−∞

∞
∫

−∞

[x(t) + iy(t)] f(x; y; t) dxdy, (13)

where the symbol 〈 〉, which stands for the expectation, is often denoted
also as E{ }.

Autocorrelation

Autocorrelation Rzz(t1, t2) of a complex random process z(t) = x(t) +
iy(t) at times t1 and t2 is defined as:

Rzz(t1, t2) = 〈z(t1) z∗(t2)〉

=

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

z(t1)z
∗(t2) f(x1, x2; y1, y2; t1, t2) dx1dx2dy1dy2, (14)

wehere the symbol ( )∗ stands for the complex conjugate.
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Hereafter, we will usually omit sufficies such as zz, for simplicity, when
we express autocorrelations. Thus, autocorrelations Rxx(t1, t2), Ryy(t1, t2),
Rzz(t1, t2), and so on, will be all denoted simply as R(t1, t2), except for cases,
when we wish to explicitly specify the random processes under consideration.

Following general properties hold for autocorrelations.

• R(t2, t1) = R∗(t1, t2).

• R(t, t) = 〈| z(t) |2〉 ≥ 0, i.e., real and positive.

• Positive definite, namely,

n
∑

i=1

n
∑

j=1

aia
∗
jR(ti, tj) ≥ 0 for any numbers ai (i = 1, 2, · · · , n).

Proof :

0 ≤ 〈|
n
∑

i=1

aiz(ti) |2〉 =
n
∑

i=1

n
∑

j=1

aia
∗
j〈z(ti) z∗(tj)〉 =

n
∑

i=1

n
∑

j=1

aia
∗
jR(ti, tj).

• An inequality:
| R(t1, t2) |2≤ R(t1, t1)R(t2, t2). (15)

Proof :

1. For any complex random variables v and w, we have

〈| v | | w |〉2 ≤ 〈| v |2〉 〈| w |2〉.

Proof :

Since we always have

〈(s | v | + | w |)2〉 = s2〈| v |2〉 + 2s〈| v | | w |〉 + 〈| w |2〉 ≥ 0,

for any real variable s, the discriminant of the above quadratic
equation with respect to s must be smaller than or equal to 0, i.e.,

〈| v | | w |〉2 − 〈| v |2〉 〈| w |2〉 ≤ 0,

and, hence,
〈| v | | w |〉2 ≤ 〈| v |2〉 〈| w |2〉.
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2. For any complex random variables v and w, we have

| 〈v w〉 | ≤ 〈| v | | w |〉.
Proof :

Let us first prove a general statement that, for any complex ran-
dom variable A = a+ ib, where a and b are real random variables,
we have

| 〈A〉 | ≤ 〈| A |〉.
Let us denote the probability density of A as f(a, b). Then | 〈A〉 |
and 〈| A |〉 are expressed as

| 〈A〉 | = |
∫ ∫

Af(a, b) dadb |
= lim

∆a→0
lim

∆b→0
|
∑∑

Af(a, b)∆a∆b |, (16)

and

〈| A |〉 =
∫ ∫

| A | f(a, b) dadb

= lim
∆a→0

lim
∆b→0

∑∑

| A | f(a, b)∆a∆b

= lim
∆a→0

lim
∆b→0

∑∑

| Af(a, b)∆a∆b |, (17)

where we replaced the integrtions by the infinite summations,
which are performed in the same way in both equations (16) and
(17), and we used a property of the probability density f(a, b) in
equation (17), that it is always real and greater than or equal to
zero.

Now, for any complex numbers B and C, we have

| B + C |≤| B | + | C |,
since

| B + C | =
√

(B + C)(B + C)∗ =
√

| B |2 +B∗C +BC∗+ | C |2

=
√

| B |2 +2 | B | | C | cos Φ+ | C |2,
where we introduced an angle Φ satisfying

B∗C =| B | | C | eiΦ,
is always smaller than | B | + | C |, because cos Φ ≤ 1. This
relation is easily extended to the sum of arbitrary number n of
complex numbers B1, B, · · ·, Bn, i.e.,

|
n
∑

i=1

Bi |≤
n
∑

i=1

| Bi |,
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because

|
n
∑

i=1

Bi |=| B1 +
n
∑

i=2

Bi |≤| B1 | + |
n
∑

i=2

Bi |=| B1 | + | B2 +
n
∑

i=3

Bi |

≤| B1 | + | B2 | + |
n
∑

i=3

Bi |= · · · ≤| B1 | + | B2 | + · · ·+ | Bn | .

Applying the above relation to the summations of equations (16)
and (17), we confirm that | 〈A〉 | ≤ 〈| A |〉.
This implies that | 〈v w〉 | ≤ 〈| v | | w |〉, since

| v w |=
√
vwv∗w∗ =

√
vv∗

√
ww∗ =| v | | w | .

3. From 1. and 2. above, we obtain

| 〈v w〉 |2 ≤ 〈| v | | w |〉2 ≤ 〈| v |2〉 〈| w |2〉,

i.e.,
| 〈v w〉 |2 ≤ 〈| v |2〉 〈| w |2〉. (18)

If we adopt here v = z(t1) and w = z∗(t2), then we prove that

| R(t1, t2) |2 ≤ R(t1, t1)R(t2, t2).

Autocovariance

Autocovariance C(t1, t2) of a complex random process z(t) at times t1
and t2 is defined as:

C(t1, t2) = R(t1, t2) − η(t1) η
∗(t2), (19)

where η(t) ≡ ηz(t) = 〈z(t)〉 is the expectation of z(t) at time t.
The autocovariance of z(t) is equal to the autocorrelation of z̃(t) = z(t)−

η(t), i.e.,
C(t1, t2) = Rz̃z̃ = 〈z̃(t1) z̃∗(t2)〉. (20)

In fact,

〈z̃(t1) z̃∗(t2)〉 = 〈[z(t1) z∗(t2) − z(t1) η
∗(t2) − η(t1) z

∗(t2) + η(t1) η
∗(t2)]〉

= R(t1, t2) − η(t1)η
∗(t2).
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Correlation Coefficient

Correlation coefficient r(t1, t2) of a complex random process z(t) at times
t1 and t2 is defined as:

r(t1, t2) =
C(t1, t2)

√

C(t1, t1)C(t2, t2)
. (21)

It is evident that

• r(t, t) = 1.

Also, the absolute value of the correlation coefficient is always smaller than
or equal to 1:

• | r(t1, t2) |≤ 1,

since from equations (15) and (20), we have

| C(t1, t2) |2≤ C(t1, t1)C(t2, t2).

Cross–Correlation

Cross–correlation Rxy(t1, t2) of two complex random processes x(t) =
xr(t) + i xi(t) and y(t) = yr(t) + i yi(t) at times t1 and t2, respectively, is
defined as:

Rxy(t1, t2) = 〈x(t1) y∗(t2)〉 =
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

x(t1) y
∗(t2) f(xr, xi; yr, yi; t1; t2)dx

r dxi dyr dyi, (22)

using the joint probability density of x(t) and y(t), given in equation (12).
Following properties hold for cross–correlations.

• Rxy(t2, t1) = R∗
yx(t1, t2).

This is evident from the above definition.

• | Rxy(t1, t2) |2 ≤ Rxx(t1, t1)Ryy(t2, t2).
This is proven by adopting v = x(t1) and w = y∗(t2) in equation (18).
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Cross–Covariance

Cross–covariance Cxy(t1, t2) of two complex random processes x(t) and
y(t) at times t1 and t2 is defined as:

Cxy(t1, t2) = Rxy(t1, t2) − ηx(t1) η
∗
y(t2). (23)

Following properties hold for cross-covariances.

• The cross–covariance of x(t) and y(t) is equal to the cross–correlation
of x̃(t) = x(t) − ηx(t) and ỹ(t) = y(t) − ηy(t), i.e.,

Cxy(t1, t2) = Rx̃ỹ(t1, t2) = 〈x̃(t1) ỹ∗(t2)〉.

• | Cxy(t1, t2) |2 ≤ Cxx(t1, t1)Cyy(t2, t2).

Cross–Correlation Coefficient

Cross–correlation coefficient rxy(t1, t2) of two complex random processes
x(t) and y(t) at times t1 and t2 is defined as:

rxy(t1, t2) =
Cxy(t1, t2)

√

Cxx(t1, t1)Cyy(t2, t2)
. (24)

It is evident that for any cross–correlation coefficient we always have

• | rxy(t1, t2) |≤ 1.

Normal (Gaussian) Process

As an example of the probability density introduced in equations (5), (7),
and (8), we consider here probability desnity of a particularly important class
of random process, namely normal (or Gaussian) process, which is known to
be a good model of signals from astronomical radio sources, as well as of
noises produced in antenna–receiving systems or in environments.

Real random process x(t), with expectation η(t) and autocovariance C(t1, t2),
is called “normal (or Gaussian) process”, if, at any times t1, t2, · · ·, tn for any
n, random variables x(t1), x(t2), · · ·, x(tn) are jointly normal (or Gaussian),
i.e., they are characterized by following probabilty densities.

• First–order Gaussian probability density:

f(x1; t1) =
1

σ1

√
2π

e
−

[x1−η1]2

2σ2
1 , (25)
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where η1 ≡ η(t1) and σ2
1 ≡ C(t1, t1) are expactation and dispersion,

respectively, of x(t) at time t1.

• Second–order Gaussian probability density:

f(x1, x2; t1, t2)

=
1

2πσ1σ2

√
1 − r2

e
− 1

2(1−r2)

(

(x1−η1)2

σ2
1

−2r
(x1−η1)(x2−η2)

σ1σ2
+

(x2−η2)2

σ2
2

)

, (26)

where we introduced notations: η1 ≡ η(t1), η2 ≡ η(t2), σ
2
1 ≡ C(t1, t1),

σ2
2 ≡ C(t2, t2), and correlation coefficient:

r ≡ C(t1, t2)
√

C(t1, t1)C(t2, t2)
.

• n-th–order Gaussian probability density:

f(x1, · · · , xn; t1, · · · , tn)

=
1

√

(2π)n∆
e
− 1

2

n
∑

i=1

n
∑

j=1

[xi−ηi]C
−1
ij

[xj−ηj ]

, (27)

where ηi ≡ η(t1), ηj ≡ η(tj), Cij ≡ C(ti, tj) is autocovariance matrix,
C−1
ij is its inverse, and ∆ ≡ det{Cij} is its determinant.

When n = 1 and n = 2, equation (27) is reduced to equations (25)
and (26). Therefore, the first– and second–order Gaussian probability
densities given in equations (25) and (26), respectively, are special cases
of the more general expression of the n-th–order normal (or Gaussian)
probability density given in equation (27).

Likewise, we can conceive a number of normal (or Gaussian) processes
which are jointly normal with each other.

• Two real normal processes x(t) and y(t) are called “jointly normal (or
Gaussian) processes”, if, at any times t1 and t2, random variables x(t1)
and y(t2) are jointly normal, i.e., they are characterized by following
joint probabilty density:

f(x, y; t1, t2)

=
1

2πσxσy
√

1 − r2
xy

e
− 1

2(1−r2
xy)

(

(x−ηx)2

σ2
x

−2 rxy
(x−ηx)(y−ηy)

σxσy
+

(y−ηy)2

σ2
y

)

, (28)
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where we introduced expectations of x(t1) and y(t2): ηx ≡ ηx(t1) and
ηy ≡ ηy(t2), dispersions of x(t1) and y(t2): σ2

x ≡ Cxx(t1, t1), σ
2
y ≡

Cyy(t2, t2), and cross–correlation coefficient:

rxy ≡
Cxy(t1, t2)

√

Cxx(t1, t1)Cyy(t2, t2)
.

Here Cxx(t1, t1), Cyy(t2, t2) and Cxy(t1, t2) are autocovariances and
cross–covariance of x(t1) and y(t2), correspondingly.

• An arbitrary number m of normal processes x(1)(t), x(2)(t), · · ·, x(m)(t)
are called “jointly normal (or Gaussian) processes”, if, at any times t1,
t2, · · ·, tm, random variables x(1)(t1), x(2)(t2), · · ·, x(m)(tm) are jointly
normal, i.e., they are characterized by following joint probabilty den-
sity:

f(x(1), · · · , x(m); t1, · · · , tm)

=
1

√

(2π)m∆
e
− 1

2

m
∑

i=1

m
∑

j=1

[x(i)−η(i)(ti)]C
−1
(i)(j)

[x(j)−η(j)(tj )]

, (29)

where η(i)(t) is expectation of x(i)(t), C(i)(j) ≡ Cx(i)x(j)
(ti, tj) is cross–

covariance matrix, C−1
(i)(j) is inverse matrix of C(i)(j), and ∆ ≡ det{C(i)(j)}

is determinant of C(i)(j).

Of course, equation (28) is a special case of equation (29) with m = 2.

• In the above statement, some random variables among x(1)(t1), x(2)(t2),
· · ·, x(m)(tm) could be values of the same normal process taken at dif-
ferent times. In such a case, some elements of matrix C(i)(j) are auto-
covariances, rather than cross–covariances.

In this sence, joint probability densities of a single normal (or Gaussian)
process given in equations (25), (26), and (27) can be regarded as
special cases of the joint probability density of the jointly normal (or
Gaussian) processes given in equation (29).

It is not difficult to confirm that the joint probability densities of jointly
normal (or Gaussian) processes given in equations (25) – (29) are consistent
with geneal properties of joint probability densities, as well as with definitions
of the expectation and the covariances, as explained in standard textbooks.
For this purpose, we can use well–known integration formulae:

∞
∫

−∞

e−a x
2

dx =

√

π

a
, (30)
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∞
∫

−∞

x e−a x
2

dx = 0, (31)

∞
∫

−∞

x2 e−a x
2

dx =
1

2

√

π

a3
, (32)

for a > 0.
For example, if we take the form of the joint normal (or Gaussian) prob-

ability density given in equation (28), we can confirm following formulae.

•
∞
∫

−∞
f(x, y; t1, t2) dy = f(x ; t1):

∞
∫

−∞
f(x, y; t1, t2) dy

=
1

2πσxσy
√

1 − r2
xy

∞
∫

−∞

e
− 1

2(1−r2
xy)

(

(x−ηx)2

σ2
x

−2 rxy
(x−ηx)(y−ηy)

σxσy
+

(y−ηy)2

σ2
y

)

dy

=
1

2πσx
√

1 − r2
xy

∞
∫

−∞

e
− 1

2(1−r2
xy)

(

(x−ηx)2

σ2
x

−2 rxy
(x−ηx)

σx
y′+y′2

)

dy′

=
1

2πσx
√

1 − r2
xy

∞
∫

−∞

e
− 1

2(1−r2
xy)

[

(1−r2xy)
(x−ηx)2

σ2
x

+(y′−rxy
x−ηx

σx
)
2
]

dy′

=
1

2πσx
√

1 − r2
xy

e
−

(x−ηx)2

2 σ2
x

∞
∫

−∞

e
− y′′

2

2 (1−r2
xy) dy′′

=
1

σx
√

2 π
e
−

(x−ηx)2

2 σ2
x = f(x ; t1), (33)

in view of equation (30), where we introduced variable transformations:

y′ =
y − ηy
σy

, y′′ = y′ − rxy
x− ηx
σx

.

• Expectation:

〈x〉 =

∞
∫

−∞

∞
∫

−∞

x f(x, y; t1, t2) dx dy =

∞
∫

−∞

x

∞
∫

−∞

f(x, y; t1, t2) dy dx

=

∞
∫

−∞

xf(x ; t1) dx =
1

σx
√

2 π

∞
∫

−∞

x e
−

(x−ηx)2

2 σ2
x dx
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=
1

σx
√

2 π

∞
∫

−∞

[(x− ηx) + ηx] e
−

(x−ηx)2

2 σ2
x dx

=
ηx

σx
√

2 π

∞
∫

−∞

e
−

(x−ηx)2

2 σ2
x dx = ηx, (34)

in view of equations (30) and (31).

• Covariance:

〈(x− ηx) (y − ηy)〉

=

∞
∫

−∞

∞
∫

−∞

(x− ηx) (y − ηy) f(x, y; t1, t2) dx dy

=
1

2πσxσy
√

1 − r2
xy

×
∞
∫

−∞

∞
∫

−∞

(x− ηx) (y − ηy) e
− 1

2(1−r2
xy)

(

(x−ηx)2

σ2
x

−2 rxy
(x−ηx)(y−ηy)

σxσy
+

(y−ηy)2

σ2
y

)

dx dy

=
σx σy

2π
√

1 − r2
xy

∞
∫

−∞

∞
∫

−∞

x′ y′ e
− 1

2(1−r2
xy)

(x′2−2rxy x′ y′+y′
2)
dx′ dy′

=
σx σy

2π
√

1 − r2
xy

∞
∫

−∞

∞
∫

−∞

(x′′ + rxy y
′′) y′′ e

− 1

2(1−r2
xy)

[x′′2+(1−r2xy) y′′2]
dx′′ dy′′

=
σx σy rxy

2π
√

1 − r2
xy

∞
∫

−∞

e
− x′′

2

2(1−r2
xy) dx′′

∞
∫

−∞

y′′
2
e−

y′′
2

2 dy′′

=
σx σy rxy

2π
√

1 − r2
xy

√

2π(1 − r2
xy)

√
2π = rxy σx σy = Cxy(t1, t2), (35)

in view of equations (30), (31), and (32), where we introduced variable
transformations:

x′ =
x− ηx
σx

, y′ =
y − ηy
σy

,

x′′ = x′ − rxy y
′, y′′ = y′.

In following discussions, we will mainly use general properties of expectations
and correlations, without specifying explicit forms of probability densities.
However, when necessary, we will assume jointly normal (or Gaussian) pro-
cesses, and explicitly use expressions of the normal probability density given
in equations (25) – (29).
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1.2.2 Random Processes in Linear Systems

Definition of Linear Systems

Let us consider a system of two complex functions x(t) and y(t) of time
t, which are related with each other by an operator L:

y(t) = L[x(t)], (36)

where x(t) is called “input” and y(t) is called “output” of the operator L.
Such a system is called “linear system”, if the operator L satisfies

L[a1 x1(t) + a2 x2(t)] = a1L[x1(t)] + a2L[x2(t)], (37)

for any complex coefficients a1, a2 and for any functions x1(t), x2(t).
The linear system is also called as “linear filter”, which linearly “filters”

the input x(t) to yield the output y(t).

Impulse Response

If the input of an operator L is a delta function δ(t) of time t, the output
is called “impulse response” of the operator, which we denote as h(t):

h(t) = L[δ(t)]. (38)

Here, we introduce “convolution” f(t) ∗ g(t) of functions f(t) and g(t),
which is defined by a following infinite integration:

f(t) ∗ g(t) =

∞
∫

−∞

f(t− α) g(α) dα, (39)

where symbol “∗” stands for the operation of the convolution. Convolution
has following properties:

f(t) ∗ g(t) = g(t) ∗ f(t) (commutative),

because

g(t)∗f(t) =

∞
∫

−∞

g(t−β) f(β) dβ =

∞
∫

−∞

f(β) g(t−β) dβ =

∞
∫

−∞

f(t−α) g(α) dα,

where we used a transformation of the argument of the integration: α = t−β
and hence dβ = −dα,
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and

f(t) ∗ g(−t) =

∞
∫

−∞

f(t− β) g(−β) dβ =

∞
∫

−∞

f(t+ α) g(α) dα,

where we used α = −β and dβ = −dα.

Then, the output of the linear system can be represented as a convolution
of the input and the impulse response, i.e.,

y(t) = x(t) ∗ h(t) =

∞
∫

−∞

x(t− α) h(α) dα. (40)

This equation is easily proven, based on the definition of the delta function,
in the following way:

y(t) = L[x(t)] = L[

∞
∫

−∞

x(β) δ(t− β) dβ] =

∞
∫

−∞

x(β)L[δ(t− β)] dβ

=

∞
∫

−∞

x(β) h(t− β) dβ =

∞
∫

−∞

x(t− α) h(α) dα = x(t) ∗ h(t).

Note that L operates only on a function of time t.

Linear Systems with Random Processes as Inputs

Hereafter, we will consider linear systems having random processes as
inputs. Then, we have following general properties.

• If x(t) and y(t) are input and output of a linear system, their expec-
tations 〈x(t)〉 and 〈y(t)〉 are also related with each other as input and
output of the same linear system, i.e.,

〈L[x(t)]〉 = L[〈x(t)〉],
or

〈x(t) ∗ h(t)〉 = 〈x(t)〉 ∗ h(t),
or

ηy(t) = L[ηx(t)]. (41)

Proof :

〈x(t) ∗ h(t)〉 = 〈
∞
∫

−∞

x(t− α) h(α) dα〉 =

∞
∫

−∞

〈x(t− α)〉 h(α) dα

= 〈x(t)〉 ∗ h(t).
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Note that the impulse response h(t) is a deterministic function of time,
and, hence, not affected by the ensemble average.

• Autocorrelation of the output:

Ryy(t1, t2) = Rxx(t1, t2) ∗ h(t1) ∗ h∗(t2),
or

Ryy(t1, t2) =

∞
∫

−∞

∞
∫

−∞

Rxx(t1 − α, t2 − β) h(α) h∗(β) dαdβ. (42)

Proof :

1. Cross–correlation of the input and the output is

Rxy(t1, t2) = 〈x(t1) y∗(t2)〉 = 〈x(t1) x∗(t2) ∗ h∗(t2)〉
= 〈x(t1) x∗(t2)〉 ∗ h∗(t2) = Rxx(t1, t2) ∗ h∗(t2),
or

Rxy(t1, t2) =

∞
∫

−∞

Rxx(t1, t2 − β) h∗(β) dβ.

2. Autocorrelation of the output is

Ryy(t1, t2) = 〈y(t1) y∗(t2)〉 = 〈x(t1) ∗ h(t1) y∗(t2)〉
= 〈x(t1) y∗(t2)〉 ∗ h(t1) = Rxy(t1, t2) ∗ h(t1),
or

Ryy(t1, t2) =

∞
∫

−∞

Rxy(t1 − α, t2) h(α) dα.

3. From 1. and 2. above, we have

Ryy(t1, t2) = Rxx(t1, t2) ∗ h∗(t2) ∗ h(t1)
= Rxx(t1, t2) ∗ h(t1) ∗ h∗(t2),
or

Ryy(t1, t2) =

∞
∫

−∞

∞
∫

−∞

Rxx(t1 − α, t2 − β) h(α) h∗(β) dαdβ.

1.2.3 Stationary Random Processes

Definitions
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• A random process z(t) is called “stationary” (or, more specifically,
“wide–sense stationary”), if the expectation does not depend on time,
and the autocorrelation is a function of time difference only:

〈z(t)〉 = η = const,

〈z(t1) z∗(t2)〉 = R(τ), (43)

where τ ≡ t1 − t2.

• Random processes x(t) and y(t) are called “jointly stationary”, if both
of them are stationary, and their cross–correlation is a function of time
difference only:

〈x(t1) y∗(t2)〉 = Rxy(τ), (44)

where τ ≡ t1 − t2.

Of course, it is not easy to find actual physical processes which strictly satisfy
these conditions. For example, some of quasars or astronomical masers are
known to exihit significant time variations in yearly, or shorter, time scales.
In a practical sense, however, physical processes are well approximated by
the stationary random processes, if equations (43) and (44) are fulfilled dur-
ing time scales, which are sufficient to estimate their statistical properties
(see discussions on ergodicity in section 1.2.4). In this sense, many physical
processes can be successfully modeled as stationary random processes.

Properties

Following formulae can be easily derived, by applying general properties
of correlations, covariances, and so on, to the particular case of the stationary
random processes as defined above.

• R(−τ) = R∗(τ).

• R(0) = 〈| z(t) |2〉 ≥ 0.

• Positive definiteness:

n
∑

i=1

n
∑

j=1

ai a
∗
jR(ti − tj) ≥ 0, for any ai.

• | R(τ) |≤ R(0).

• C(τ) = R(τ)− | η |2, autocovariance.
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• r(τ) = C(τ)/C(0), correlation coefficient.

• | r(τ) |≤ 1.

• Rxy(−τ) = R∗
yx(τ).

• | Rxy(τ) |2≤ Rxx(0)Ryy(0).

• Cxy(τ) = Rxy(τ) − ηx η
∗
y, cross–covariance.

• rxy = Cxy(τ)/
√

Cxx(0)Cyy(0), cross–correlation coefficient.

• | rxy(τ) |≤ 1.

1.2.4 Ergodicity

How can we estimate various statistical properties of a random process, if
we are given with a single sample of time series only, which is an outcome of
a single trial?

• Definition.
A random process z(t) is called “ergodic” if its ensemble averages are
equal to appropriate time averages.

This implies that we can estimate any statistical property of
z(t), using time average of the single sample, if the random
process is ergodic.

• Mean–ergotic process.
A random process z(t), with constant expectation:

η = 〈z(t)〉,

is called “mean–ergotic”, if its time average tends to η as averaging
time tends to infinity:

ηT =
1

2T

T
∫

−T

z(t)dt → η as T → ∞.

• A condition for the mean–ergotic process.
It is evident that

〈ηT 〉 =
1

2T

T
∫

−T

〈z(t)〉dt = η.
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Therefore, z(t) is mean–ergotic, if its “variance”, or “dispersion”, σ2
T

tends to 0 as T → ∞, i.e.,

σ2
T ≡ 〈| ηT − η |2〉 → 0 as T → ∞.

Since

σ2
T = 〈| ηT − η |2〉 =

1

(2T )2

T
∫

−T

T
∫

−T

〈(z(t1) − η) (z(t2) − η)∗〉 dt1 dt2

=
1

(2T )2

T
∫

−T

T
∫

−T

C(t1, t2) dt1 dt2,

where C(t1, t2) is the autocovariance, and we used here equation (20),
the above condition is equivalent to

1

(2T )2

T
∫

−T

T
∫

−T

C(t1, t2) dt1 dt2 → 0 as T → ∞.

• In the stationary random case.
If z(t) is a stationary random process, and, therfore, the autocovariance
is a function of time diffference τ = t1 − t2 only:

C(t1, t2) = C(τ),

the double integral in the above condition is reduced to a single integral:

1

2T

2T
∫

−2T

C(τ)

(

1 − | τ |
2T

)

dτ → 0 as T → ∞, (45)

because

T
∫

−T

T
∫

−T

C(t1, t2) dt1 dt2 =

2T
∫

−2T

C(τ)(2T− | τ |) dτ, (46)

as we can easily see from Figure 8. In fact, in the rectangular range
of integration −T ≤ t1 ≤ T and −T ≤ t2 ≤ T in Figure 8, the
autocovariance C(τ) is constant along a line t1 − t2 = τ , and an area of
the hatched region, put between two lines t1−t2 = τ and t1−t2 = τ+∆τ
is nearly equal to the area of the enclosing parallelogram, which is equal
to (2T− | τ |) ∆τ , in the linear approximation with respect to small
∆τ .
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t1

t2

τ+∆τ
τ

T

T

-T

-T

t1-t2=-2T

t1-t2=
t1-t2=t1-t2=2T τ+∆τ

τ

0

2T-|τ|

Figure 8: Geometry of the integration.

• Correlation–ergodic process.
A stationary random process z(t) with an autocorrelation

R(ξ) = 〈z(t + ξ) z∗(t)〉,

is called “correlation–ergodic”, if the corresponding process uξ(t):

uξ(t) = z(t + ξ) z∗(t),

is mean–ergotic, i.e., if

RT ≡ 1

2T

T
∫

−T

uξ(t) dt→ R(ξ) as T → ∞.

Similarly to the case of the mean–ergotic process, z(t) is correlation–
ergotic, if the variance, or dispersion, σ2

RT
≡ 〈| RT − R(ξ) |2〉 tends to

0 as T → ∞, or, equivalently, if an autocovarinace of uξ(t):

Cuu(τ) = Ruu(τ) − R2(ξ),
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where Ruu(τ) is an autocorrelation of uξ(t):

Ruu(τ) = 〈uξ(t + τ) u∗ξ(t)〉 = 〈z(t + ξ + τ) z∗(t + τ) z∗(t+ ξ) z(t)〉,

satisfies the condition in equation (45) for any ξ, i.e.,

1

2T

2T
∫

−2T

Cuu(τ)

(

1 − | τ |
2T

)

dτ → 0 as T → ∞. (47)

For actual physical processes, which are approximated by the stationary
random processes, it is likely that autocovariances are finite everywhere and
tend to 0 when τ → ±∞. Therefore, equations (45) and (47) appear well
satisfied in the most cases. In the followings, we assume that these equations
are fulfilled, and, hence, we can estimate both expectation and correlation of
our physical process in terms of the time averaging of a single sample.

It is known that the power or the correlation of a moderately strong
signal from an astronomical radio source, which is estimated by time averag-
ing in a square–law detector or in a correlator, usually reaches a sufficiently
high signal–to–noise ratio, that means a small enough dispersion, after aver-
aging during seconds to hours, depending on telescope or array sensitivity.
The detected power or correlation is usually almost time–invariant during
time–scales from hours to months. Therefore, radio astronomical data are
mostly consistent with assumptions of the stationary random process and
the ergodicity.

1.2.5 Stationary Random Processes in Linear Systems

Let us consider cases when inputs of linear systems are stationary random
processes. Then, we have following properties.

• If an input x(t) in a linear system y(t) = L[x(t)] is a stationary random
process, then an output y(t) is also a stationary random process.

Proof :

1. Expectation ηy(t) of the output y(t) is constant in time, because

ηy(t) =

∞
∫

−∞

ηx(t− α) h(α) dα = ηx

∞
∫

−∞

h(α) dα = const,
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since x(t) is stationary, and hence, ηx(t) = ηx is constant in time.
Thus, we have

ηy = ηx

∞
∫

−∞

h(α) dα. (48)

2. Autocorrelation Ryy(t1, t2) of the output y(t) is a function of time
difference τ = t1 − t2 only, because

Ryy(t1, t2) =

∞
∫

−∞

∞
∫

−∞

Rxx(t1 − α, t2 − β) h(α) h∗(β) dαdβ

=

∞
∫

−∞

∞
∫

−∞

Rxx(τ − α + β) h(α) h∗(β) dαdβ,

since x(t) is stationary, and hence,

Rxx(t1 − α, t2 − β) = Rxx(t1 − α− (t2 − β)) = Rxx(τ − α + β).

Then, the above formula is now expressed as:

Ryy(τ) = Rxx(τ) ∗ h(τ) ∗ h∗(−τ). (49)

• If an input x(t) in a linear system y(t) = L[x(t)] is a stationary random
process, then the input x(t) and the output y(t) are jointly stationary.

Proof :

1. We have proven above that, if the input is stationary, then the
output is also stationary, i.e., both x(t) and y(t) are stationary.

2. Cross–correlation Rxy(t1, t2) of the input x(t) and the output y(t)
is a function of time difference τ = t1 − t2 only, because

Rxy(t1, t2) = 〈x(t1) y∗(t2)〉 =

∞
∫

−∞

〈x(t1) x∗(t2 − α)〉 h∗(α) dα

=

∞
∫

−∞

Rxx(τ + α) h∗(α) dα = Rxx(τ) ∗ h∗(−τ).

Thus, we have
Rxy(τ) = Rxx(τ) ∗ h∗(−τ). (50)

34



• Likewise, we can prove an equation:

Ryy(τ) = Rxy(τ) ∗ h(τ), (51)

which, together with equation (50), offers another derivation of equa-
tion (49).

• If x1(t) and x2(t) are jointly stationary random processes, then out-
puts y1(t) and y2(t), which are obtained from x1(t) and x2(t) through
arbitrary linear operators L1 and L2, respectively, are also jointly sta-
tionary.

Proof :

Let the two linear operators L1 and L2 correspond to impulse responses
h1(t) and h2(t), respectively. Then we have

y1(t) = L1[x1(t)] = x1(t) ∗ h1(t) =

∞
∫

−∞

x1(t− α) h1(α) dα,

y2(t) = L2[x2(t)] = x2(t) ∗ h2(t) =

∞
∫

−∞

x2(t− α) h2(α) dα.

Both y1(t) and y2(t) are, of course, stationary, and their cross–correlation:

Ry1y2(t1, t2) = 〈y1(t1) y
∗
2(t2)〉

=

∞
∫

−∞

∞
∫

−∞

〈x1(t1 − α) x∗2(t2 − β)〉 h1(α) h∗2(β) dαdβ

=

∞
∫

−∞

∞
∫

−∞

Rx1x2(τ − α + β) h1(α) h∗2(β) dαdβ,

is a function of time difference τ = t1 − t2 only. This proves the joint
stationarity of y1(t) and y2(t), and yields

Ry1y2(τ) = Rx1x2(τ) ∗ h1(τ) ∗ h∗2(−τ). (52)

1.2.6 Spectra of Stationary Random Processes

Definitions

• Fourier transform S(ω) of an autocorrelation R(τ) of a stationary ran-
dom process is called “power spectrum” (or “spectral density”) of the
process. Here, ω is an angular frequency, which is related to a linear
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frequency ν as ω = 2πν. Thus, the power spectrum and the autocor-
relation are related to each other by the Fourier– and inverse Fourier
transforms:

S(ω) =

∞
∫

−∞

R(τ)e−iωτ dτ, (53)

R(τ) =
1

2π

∞
∫

−∞

S(ω)eiωτ dω. (54)

Hereafter, we express a Fourier transform pair by a symbol “⇔”. Then,

S(ω) ⇔ R(τ).

• Fourier transform Sxy(ω) of a cross–correlation Rxy(τ) of jointly sta-
tionary random processes x(t) and y(t) is called “cross–power spec-
trum”. Thus,

Sxy(ω) =

∞
∫

−∞

Rxy(τ)e
−iωτ dτ, (55)

Rxy(τ) =
1

2π

∞
∫

−∞

Sxy(ω)eiωτ dω, (56)

and
Sxy(ω) ⇔ Rxy(τ).

Note that convergence of Fourier integrals in equations (53) and (55), and
therefore in their inverses in equations (54) and (56), too, is usually guaran-
teed, since, for actual physical processes, R(τ) and Rxy(τ) are mostly finite
everywhere, and tend to zero as τ → ±∞.

Properties

• Power 〈| z(t) |2〉 of a stationary random process z(t) is equal to an
integrated power spectrum over the whole frequency range:

〈| z(t) |2〉 = R(0) =
1

2π

∞
∫

−∞

S(ω) dω =

∞
∫

−∞

S(ω) dν, (57)

where ν = ω/(2π) is a frequency, corresponding to the angular fre-
quency ω.
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• Power spectrum S(ω) is a real function.

Proof :

Since R(−τ) = R∗(τ),

S∗(ω) =

∞
∫

−∞

R∗(τ)eiωτ dτ =

∞
∫

−∞

R(−τ)eiωτ dτ =

∞
∫

−∞

R(τ)e−iωτ dτ = S(ω).

• For any cross–power spectrum, Sxy(ω) = S∗
yx(ω).

Proof :

Since Rxy(−τ) = R∗
yx(τ),

S∗
yx(ω) =

∞
∫

−∞

R∗
yx(τ)e

iωτ dτ =

∞
∫

−∞

Rxy(−τ)eiωτ dτ =

∞
∫

−∞

Rxy(τ)e
−iωτ dτ

= Sxy(ω).

• A power spectrum S(ω) corresponding to a real autocorrelation R(τ)
is an even function of ω (see Figure 9):

S(−ω) = S(ω). (58)

0 ω

S(ω)

Figure 9: Power spectrum is even when autocorrelation is real.

Proof :

Since, in this case, R(−τ) = R(τ) (the real autocorrelation is an even
function of τ),

S(−ω) =

∞
∫

−∞

R(τ)eiωτ dτ =

∞
∫

−∞

R(−τ)eiωτ dτ =

∞
∫

−∞

R(τ)e−iωτ dτ = S(ω).
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• A cross–power spectrum corresponding to a real cross–correlation sat-
isfies

Sxy(−ω) = Syx(ω), (59)

and, therefore, is Hermitian symmetric:

Sxy(−ω) = S∗
xy(ω), (60)

(see Figure 10).

ω ω0 0

Re Sxy(ω) Im Sxy(ω)

Figure 10: Cross–power spectrum is Hermitian symmetric (i.e., real part is
even and imaginary part is odd) when cross–correlation is real.

Proof :

Since, in this case, Rxy(−τ) = Ryx(τ),

Sxy(−ω) =

∞
∫

−∞

Rxy(τ)e
iωτ dτ =

∞
∫

−∞

Rxy(−τ)e−iωτ dτ =

∞
∫

−∞

Ryx(τ)e
−iωτ dτ

= Syx(ω),

and, in view of the general property Sxy(ω) = S∗
yx(ω), we also have

Sxy(−ω) = S∗
xy(ω).

• Real autocorrelation can be described solely by the positive frequency
range of the power spectrum.

Proof :

Since S(ω) = S(−ω), in this case,

R(τ) =
1

2π

∞
∫

−∞

S(ω)eiωτ dω =
1

2π





0
∫

−∞

S(ω)eiωτ dω +

∞
∫

0

S(ω)eiωτ dω




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=
1

2π

∞
∫

0

[S(−w)e−iωτ + S(ω)eiωτ ] dω =
1

2π

∞
∫

0

S(ω)[e−iωτ + eiωτ ] dω

=
1

π

∞
∫

0

S(ω) cos(ωτ) dω =
1

π
<




∞
∫

0

S(ω)eiωτ dω



 . (61)

• Real cross–correlation can be described solely by the positive frequency
range of the cross–power spectrum.

Proof :

Since Sxy(−ω) = S∗
xy(ω), in this case,

Rxy(τ) =
1

2π

∞
∫

−∞

Sxy(ω)eiωτ dω =
1

2π





0
∫

−∞

Sxy(ω)eiωτ dω +

∞
∫

0

Sxy(ω)eiωτ dω





=
1

2π

∞
∫

0

[Sxy(−w)e−iωτ + Sxy(ω)eiωτ ] dω

=
1

2π

∞
∫

0

[S∗
xy(ω)e−iωτ + Sxy(ω)eiωτ ] dω

=
1

π
<

∞
∫

0

Sxy(ω)eiωτ dω. (62)

• White noise: if the spectrum is flat throughout the whole frequency
range, then the correlation is proportional to the delta function of τ .

If S(ω) = S = const, then

R(τ) =
1

2π

∞
∫

−∞

S(ω)eiωτ dω = S
1

2π

∞
∫

−∞

eiωτ dω = S δ(τ). (63)

If Sxy(ω) = Sxy = const, then

Rxy(τ) =
1

2π

∞
∫

−∞

Sxy(ω)eiωτ dω = Sxy
1

2π

∞
∫

−∞

eiωτ dω = Sxy δ(τ). (64)

Here we used a formula

∞
∫

−∞

eiωτ dω = 2πδ(τ), (65)
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which is known as one of the definitions of the delta function.

Thus, if spectra of random processes are completely flat (white), then
their correlations are non–zero, only when τ = 0.

• Convolution theorem: Fourier transform of a convolution of two func-
tions is equal to a product of Fourier transforms of those functions, i.e.,
if a(τ) ⇔ A(ω) and b(τ) ⇔ B(ω), then

a(τ) ∗ b(τ) ⇔ A(ω)B(ω). (66)

Proof :
∞
∫

−∞

a(τ) ∗ b(τ) e−iωτ dτ =

∞
∫

−∞

∞
∫

−∞

a(τ − α) b(α) e−iωτ dα dτ

=

∞
∫

−∞

∞
∫

−∞

a(τ ′) e−iωτ
′

b(τ ′′) e−iωτ
′′

dτ ′ dτ ′′ = A(ω)B(ω),

where we introduced transformations τ ′ = τ − α and τ ′′ = α.

• Another convolution theorem holds for a product of functions a(τ) and
b(τ):

a(τ) b(τ) ⇔ 1

2π
A(ω) ∗B(ω), (67)

because
∞
∫

−∞

a(τ) b(τ) e−iωτ dτ

=
1

(2π)2

∞
∫

−∞





∞
∫

−∞

A(ω′) eiω
′τ dω′









∞
∫

−∞

B(ω′′) eiω
′′τ dω′′



 e−iωτ dτ

=
1

(2π)2

∞
∫

−∞

∞
∫

−∞

A(ω′)B(ω′′)





∞
∫

−∞

e−i(ω−ω
′−ω′′) τ dτ



 dω′ dω′′

=
1

2π

∞
∫

−∞

∞
∫

−∞

A(ω′)B(ω′′) δ(ω − ω′ − ω′′) dω′ dω′′

=
1

2π

∞
∫

−∞

A(ω − ω′)B(ω′) dω′ =
1

2π
A(ω) ∗B(ω),

we used here the relation
∞
∫

−∞

e−iωτ dτ =

∞
∫

−∞

eiωτ dτ = 2πδ(ω).
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• Shift theorem:
If a(τ) ⇔ A(ω), then

a(τ − τ0) ⇔ A(ω) e−iωτ0,

a(τ)eiω0τ ⇔ A(ω − ω0). (68)

Proof :

∞
∫

−∞

a(τ − τ0) e
−iωτ dτ =

∞
∫

−∞

a(τ ′) e−iω(τ ′+τ0) dτ ′

=





∞
∫

−∞

a(τ ′)e−iωτ
′

dτ ′



 e−iωτ0 = A(ω)e−iωτ0,

and,

∞
∫

−∞

a(τ)eiω0τ e−iωτ dτ =

∞
∫

−∞

a(τ)e−i(ω−ω0)τ dτ = A(ω − ω0). (69)

1.2.7 Spectra of Outputs of Linear Systems

Let us call a Fourier transform H(ω) of an impulse response h(t) of a linear
system as the “system function”:

H(ω) =

∞
∫

−∞

h(t) e−iωt dt, (70)

or

H(ω) ⇔ h(t).

For the system function, we have

H∗(ω) ⇔ h∗(−t),

because

H∗(ω) =

∞
∫

−∞

h∗(t)eiωt dt =

∞
∫

−∞

h∗(−t)e−iωt dt.

Now, let us consider stationary random processes as inputs of a linear
system y(t) = L[x(t)] with the impulse response h(t) and the system function
H(ω).
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• Expectation of the output.

ηy = ηx

∞
∫

−∞

h(α) dα = ηxH(0). (71)

• Power spectra of the output Syy(ω) and the inputs Sxx(ω) are mutually
related to each other as

Syy(ω) = Sxx(ω) | H(ω) |2 . (72)

Proof :

In view of the convolution theorem given in equation (66), and prop-
erties of correlations,

Rxy(τ) = Rxx(τ) ∗ h∗(−τ) ⇔ Sxy(ω) = Sxx(ω)H∗(ω),

Ryy(τ) = Rxy(τ) ∗ h(τ) ⇔ Syy(ω) = Sxy(ω)H(ω),

and, hence

Ryy(τ) = Rxx(τ) ∗ h(τ) ∗ h∗(−τ) ⇔ Syy(ω) = Sxx(ω) | H(ω) |2 .

• Autocorrelations of the outputs:

Ryy(τ) = 〈y(t+ τ) y∗(t)〉 =
1

2π

∞
∫

−∞

Sxx(ω) | H(ω) |2 eiωτ dω,

and, in particular,

Ryy(0) = 〈| y(t) |2〉 =
1

2π

∞
∫

−∞

Sxx(ω) | H(ω) |2 dω. (73)

• If the impulse response h(t) is real, then

H∗(ω) =

∞
∫

−∞

h(t)eiωt dt = H(−ω), (74)

and, therefore, | H(ω) |2 is an even function of ω, because

| H(−ω) |2= H(−ω)H∗(−ω) = H∗(ω)H(ω) =| H(ω) |2 . (75)

• Cross–power spectrum of outputs y1(t) = x1(t) ∗ h1(t) and y2(t) =
x2(t) ∗ h2(t) of jointly stationary inputs x1(t) and x2(t) through two
linear systems with impulse responses h1(t) and h2(t).
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As we saw earlier in equation (52), the cross–correlation Ry1y2(τ) of
the outputs is expressed through the cross–correlation of the inputs
Rx1x2(τ) as

Ry1y2(τ) = Rx1x2(τ) ∗ h1(τ) ∗ h∗2(−τ).
Therefore, the convolution theorem in equation (66) gives us the cross–
power spectrum:

Sy1y2(ω) = Sx1x2(ω)H1(ω)H∗
2 (ω), (76)

where Sx1x2(ω) ⇔ Rx1x2(τ) is a cross–power spectrum of the inputs.

• Cross–correlation of the outputs.

Ry1y2(τ) = 〈y1(t + τ) y∗2(t)〉 =
1

2π

∞
∫

−∞

Sx1x2(ω)H1(ω)H∗
2(ω)eiωτ dω,

and, hence,

Ry1y2(0) = 〈y1(t) y
∗
2(t)〉 =

1

2π

∞
∫

−∞

Sx1x2(ω)H1(ω)H∗
2(ω) dω. (77)

1.2.8 Two Designs of Spectrometers

As an example of applications of the theory of the stationary random process,
let us consider principles of two types of spectrometers which have been
widely used in the radio astronomy (Figures 11 and 12).

In the filterbank spectrometer (Figure 11), received voltage from a radio
source is equally fed to n identical analog narrow–band BPF’s (band–pass–
filters), which are called “filterbank” with successive center frequences ν1, ν2,
· · ·, νn. Outputs of the BPF’s are squared and averaged by SQ (square–law)
detectors and resultant powers yield a spectral shape of the source at the
above frequencies.

LO

BPF ν1 SQ Detector

BPF νn-1 SQ Detector

BPF ν2 SQ Detector

BPF ν3 SQ Detector

BPF νn SQ Detector

Spectrum

Figure 11: Basic design of a filterbank spectrometer.
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In the autocorrelation spectrometer (Figure 12), on the other hand, the
received voltage is first digitized by an analog–to–digital converter (A/D),
and then equally divided into two digital signals, which are fed to n multi-
pliers and integrators, one directly, and another with successive time delays
0, τ , 2τ , · · ·, (n − 1)τ . The resultant ‘autocorrelation’ as a function of time
delay is then Fourier transformed, and converted to a power spectrum.

LO

A/D

τ

τ

τ

τ

τ

IntegratorMultiplier

IntegratorMultiplier

IntegratorMultiplier

IntegratorMultiplier

IntegratorMultiplier

IntegratorMultiplier
Spectrum

F
ou

ri
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 T
ra
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fo

rm
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io
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Figure 12: Basic design of an autocorrelation spectrometer.

The principles of the two designs look quite different. Do they really
produce the same spectrum?

As far as the ergodicity holds, it is clear that the autocorrelation spec-
trometer must closely approximate the calculation of the power spectrum of
the input signal (received voltage) as the Fourier transform of the autocor-
relation, as we have described so far.

For the filterbank spectrometer, let us consider i-th narrow–band BPF as
a linear system, which has an input stationary random process x(t), which
is the received voltage in this case, an output yi(t), and an impulse response
hi(t), corresponding to a rectangular sytem function Hi(ω):

Hi(ω) =











√

2π
∆ω

ωi − ∆ω
2

≤ ω ≤ ωi +
∆ω
2
,

0 otherwise,

where ωi = 2πνi is the i-th center angular frequency, and ∆ω is the frequency
bandwidth of the BPF. If the power spectrum of the input is Sxx(ω), then,
according to equation (72), the power spectrum of the output Syy(ω) is

Syy(ω) = Sxx(ω) | Hi(ω) |2,

(Figure 13). Since, in view of the ergodicity, the time averaging in a square–
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0

Sxx(ω)

ω ω ω

2π
∆ω

Hi(ω) Syy(ω)

0 0

∆ω ∆ω

ωi ωi

Figure 13: Band–pass filter passes a segment of the input power spectrum.

law detector must yield the power, or the autocorrelation at τ = 0, of the
output signal, if the averaging time is sufficiently long, we obtain

〈| yi(t) |2〉 =
1

2π

∞
∫

−∞

Syy(ω) dω =
1

2π

∞
∫

−∞

Sxx(ω) | Hi(ω) |2 dω

=
1

∆ω

ωi+
∆ω
2

∫

ωi−
∆ω
2

Sxx(ω) dω.

This “power passed by a BPF” is nothing but a mean of the power spec-
trum of the received voltage Sxx(ω), involved in the spectral range ωi −
∆ω
2

≤ ω ≤ ωi + ∆ω
2

. Therefore, if ∆ω is sufficiently narrow, and Sxx(ω)
is continuous around ωi, then we approximately have

〈| yi(t) |2〉 ' Sxx(ωi).

Thus two spectrometers really yield the same power spectrum of the received
voltage.

This example gives us a clear feel, that the power spectrum, defined as
a Fourier transform of the autocorrelation of the input signal, is really a
“spectrum of the power” of the signal.

1.2.9 Fourier Transforms of Stationary Random Processes

So far, we have considered Fourier transformation of correlations of the sta-
tionary random processes. Now, let us proceed to considerations of the
Fourier transformation of the stationary random processes themselves.

Assume that a Fourier integral of a random process z(t) is expressed as

Z(ω) =

∞
∫

−∞

z(t) e−iωt dt. (78)
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Since z(t) is a random process in time t, it is natural to consider that Z(ω)
is a random process in angular frequency ω, i.e., it is a function of ω, and its
value at any ω is a random variable, which may vary from trial to trial.

If we apply the inverse Fourier transform to equation (78), we would have

z(t) =
1

2π

∞
∫

−∞

Z(ω) eiωt dω, (79)

i.e., we could express any random process in time t as a superposition of
infinite number of frequency components, which are themselves random pro-
cesses in angular frequency ω.

Strictly speaking, however, we must be aware that the convergence of
the intrgrals in equations (78) and (79) is not, in general, guaranteed, since
the random processes may have finite amplitudes from the infinite past to
the infinite future. Of course, we could restrict the actual integration range
to −T < t ≤ T with sufficiently large T . In fact, durations of actual
physical processes are most likely to be shorter than the age of our Universe.
However, a too strong emphasis on this point may cause difficulties when we
require stationarity to the random processes. Special integral forms are often
introduced in the literature to assure the convergence. We will, however,
just assume some kind of convergence of the above integrals, without being
heavily involved in the mathematical strictness. Instead, we will concentrate
our attentions to several simple but useful statistical relations between the
random process z(t) and its Fourier transform Z(ω).

Properties of Fourier transforms of the random processes.

• Expectation of Z(ω) is a Fourier transform of the expectation η(t) of
z(t).

Proof :

Taking ensemble average of the two sides of the Fourier transformation
in equation (78), we have

〈Z(ω)〉 =

∞
∫

−∞

〈z(t)〉 e−iωt dt =

∞
∫

−∞

η(t) e−iωt dt.

• If z(t) is a stationary random process, the expectaion of Z(ω) has a
delta–function form with respect to ω.
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Proof :

Since
〈z(t)〉 = η = const,

we have

〈Z(ω)〉 =

∞
∫

−∞

η e−iωt dt = 2π η δ(ω), (80)

according to equation (65).

• An autocorrelation of Z(ω), defined as 〈Z(ω1)Z
∗(ω2)〉, is related to

a two–dimensional Fourier transform Γ(ω1, ω2) of an autocorrelation
R(t1, t2) = 〈z(t1) z∗(t2)〉 of z(t), which is

Γ(ω1, ω2) =

∞
∫

−∞

∞
∫

−∞

R(t1, t2) e
−i(ω1t1+ω2t2) dt1 dt2,

by a formula:
〈Z(ω1)Z

∗(ω2)〉 = Γ(ω1, −ω2). (81)

Proof :

From equation (78),

〈Z(ω1)Z
∗(ω2)〉 =

∞
∫

−∞

∞
∫

−∞

〈z(t1) z∗(t2)〉 e−i(ω1t1−ω2t2) dt1 dt2

=

∞
∫

−∞

∞
∫

−∞

R(t1, t2) e
−i(ω1t1−ω2t2) dt1 dt2 = Γ(ω1, −ω2).

• If z(t) is a stationary random process, having a power spectrum S(ω),
we have

〈Z(ω1)Z
∗(ω2)〉 = 2π S(ω1) δ(ω1 − ω2). (82)

Proof :

Since, in view of the stationarity of z(t), its autocorrelation 〈z(t1) z∗(t2)〉 =
R(t1, t2) = R(τ) is a function of time difference τ = t1−t2 only. There-
fore,

〈Z(ω1)Z
∗(ω2)〉 =

∞
∫

−∞

∞
∫

−∞

R(t1, t2) e
−i(ω1t1−ω2t2) dt1 dt2

=

∞
∫

−∞

∞
∫

−∞

R(τ) e−iω1τ−i(ω1−ω2)t2 dτ dt2
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=

∞
∫

−∞

R(τ) e−iω1τ dτ

∞
∫

−∞

e−i(ω1−ω2) t2 dt2

= 2π S(ω1) δ(ω1 − ω2).

• If x(t) and y(t) are jointly stationary random processes, having a cross–
power spectrum Sxy(ω), a cross–correlation of their Fourier transforms:

X(ω) =

∞
∫

−∞

x(t) e−iωt dt, and Y (ω) =

∞
∫

−∞

y(t) e−iωt dt,

is equal to
〈X(ω1)Y

∗(ω2)〉 = 2π Sxy(ω1) δ(ω1 − ω2). (83)

Proof :

Since the cross–correlation 〈x(t1) y∗(t2)〉 = Rxy(t1, t2) = Rxy(τ) is a
function of time difference τ = t1 − t2 only, we have

〈X(ω1)Y
∗(ω2)〉 =

∞
∫

−∞

∞
∫

−∞

Rxy(t1, t2) e
−i(ω1t1−ω2t2) dt1 dt2

=

∞
∫

−∞

∞
∫

−∞

Rxy(τ) e
−iω1τ−i(ω1−ω2)t2 dτ dt2

=

∞
∫

−∞

Rxy(τ) e
−iω1τ dτ

∞
∫

−∞

e−i(ω1−ω2) t2 dt2

= 2π Sxy(ω1) δ(ω1 − ω2).

Thus, the autocorrelation and the cross–correlation of the Fourier transforms
of the stationary random processes are uniquely related to their power and
cross–power spectra by equations (82) and (83). Therefore, the Fourier trans-
forms of the stationary random processes can be regarded as useful tools for
calculating the spectra. The FX–type correlators are the realizations of this
principle.

Note that the expectation of Z(ω), which is the Fourier transform of a
stationary random process z(t), has a delta–function form with respect to
the angular frequency ω, that means not altogether constant in ω, except for
a special case when 〈z(t)〉 = η = 0. Also, the RHS of equations (82) and
(83) are not functions of angular–frequency difference ω1 − ω2 only, because
of the dependence on ω1 in S(ω1) and Sxy(ω1), except for special cases of the
complete white spectra, where S(ω) = const or Sxy(ω) = const. Therefore,
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the Fourier transforms of the stationary random processes are not wide–sense
stationary, in general, with respect to ω.

1.3 The White Fringe

1.3.1 A Simple Interferometer

A radio interferometer, in its simplest form, can be illustrated as Figure 14.

multiplier

integrator
correlator

v1 v2
D

θ

s

cτ g

Figure 14: A simple interferometer.

This ia a two–element interferometer consisting of idential antennas, iden-
tial receivers and a correlator, which is a combination of a multiplier and
an integrator (a time–averager). We ignore here details of receiving sys-
tems, including the frequency conversion, just regarding as if the correlation
processing is performed at RF (radio frequency) band.

Important information which is derived from interferometric observations
is the geometric delay τg. For an infinitely distant point radio source, which
we assume in this simplified case, the geometric delay is expressed in a form:

τg =
D · s
c

=
D sin θ

c
, (84)

where D is a “baseline vector” connecting reference points of two antennas,
s is a “source vector” which is a unit vector directed towards the point radio
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source, c is the light velocity, and θ is an angle of the source direction s from
a plane perpendicular to the baseline vector D. For simplicity, we assume
that the same wavefront of the electromagnetic wave from an astronomical
radio source arrive at two antennas with a time delay, which is equal to the
geometric delay τg, ignoring atmospheric and other delay factors.

We assume a case when the beam centers of the two antennas are exactly
oriented towards the radio source. Also, we assume that the source direction
is close to the plane perpendicular to the baseline, i.e., θ ≈ 0, and the
geometric delay τg is within a small range around zero. Also, we ignore
effects of diurnal motion of an observed radio source, just assuming that the
source is at rest or moving very slowly.

We ignore, at this stage, any contribution of the system noise, in order to
concentrate our attention to the basic characteristics of the correlated radio
source signals only.

In summary, we assume following properties for our simple interferometer:

• point–like radio source,

• identical antennas,

• identical receivers,

• correlation at RF–band,

• source diurnal motion is neglected,

• no delay other than the geometric,

• no system noise contribution.

1.3.2 Received Voltages as Stationary Random Processes

Let us assume that the received voltage v(t), as well as the electric field inten-
sity E(t) of the radio wave which generates the voltage, are real stationary
random processes, satisfying the ergodicity. Here, we used a scalar function
E(t) for the electric field intensity, since any antenna can receive only one
polarization component of the electric field intensity vector E(t). Therefore,
E(t) here stands for a single polarization component of E(t) in a plane per-
pendicular to the direction of propagation of the transversal electromagnetic
wave, which is commonly received by two antennas of the interferometer.

In actual radio astronomical observations, we usually see that the recieved
voltage oscillates around zero value and its time average is just zero, i.e.,
time invariant. Also, the outputs of the correlators, which are time–averaged
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products of the received voltages, are almost time invariant, as far as we
neglect the slow intrinsic time variability of the radio source. At the same
time, the correlator outputs vary when we artificially insert different time
delays between the two voltage time series, implying that they are functions
of the time delay (i.e., of the time difference).

Therefore, the situation, which we experience in our observations, is just
consistent with the stationarity and ergodicity assumptions.

Let us consider that the received voltage v(t) and the electric field inten-
sity E(t), generating the voltage, are related to each other by a linear system
with a real impulse response q(t):

v(t) = E(t) ∗ q(t) =

∞
∫

−∞

E(t− α) q(α) dα. (85)

Here q(t) expresses the response of the antenna–receiver system to the inci-
dent radio wave, which, in particular, determines the frequency characteris-
tics of the system as a BPF (band–pass–filter) passing a limited frequency
range with a bandwidth ∆ω centered at ω0.

As we stated above, we assume that the responses of the antenna–receiver
systems, in the two antennas of our simple interferometer, are identical, for
simplicity.

1.3.3 Cross–Correlation of Received Voltages

Let us denote the received voltages of the two antennas as v1(t) and v2(t).
Since they are generated by the same electromagnetic wave from a radio
source, but arrived at two antennas at different times due to the geometric
delay τg, we can express them through a common electric field intensity E(t)
as:

v1(t) =

∞
∫

−∞

E(t− τg − α) q(α) dα,

v2(t) =

∞
∫

−∞

E(t− α) q(α) dα, (86)

following equation (85). It is evident that v1(t) and v2(t) are jointly station-
ary random processes, because they are the outputs of linear systems (here,
we assumed identical) with the same input stationary random process E(t).

Now, let us consider that v1(t) and v2(t) are fed to the correlator shown
in Figure 14. Since the correlation processing is the multiplication and inte-
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gration of the signals, the correlator output R can be modeled as

R =
1

2T

T
∫

−T

v1(t)v2(t)dt. (87)

Of course, 〈R〉 = 〈v1(t)v2(t)〉, as far as v1(t) and v2(t) are jointly stationary
random processes, and, in view of the ergodicity, R tends to 〈v1(t)v2(t)〉 as
the integration time T increases to the infinity:

R → 〈R〉 = 〈v1(t)v2(t)〉, as T → ∞. (88)

Therefore, assuming that the integration time is sufficiently long, we can
approximate the output as

R ∼= 〈v1(t)v2(t)〉 = Rv1v2(0), (89)

where Rv1v2(0) is the cross–correlation of the two jointly stationary random
processes v1(t) and v2(t):

Rv1v2(τ) = 〈v1(t)v2(t− τ)〉, (90)

at the time difference τ = 0.
Since v1(t) and v2(t) satisfy equation (86), we have

Rv1v2(τ) =

∞
∫

−∞

∞
∫

−∞

〈E(t− τg − α)E(t− τ − β)〉 q(α) q(β) dαdβ

=

∞
∫

−∞

∞
∫

−∞

REE(τ − τg − α + β) q(α) q(β) dαdβ, (91)

where REE(τ) is the autocorrelation of E(t):

REE(τ) = 〈E(t)E(t− τ)〉. (92)

Let us introduce the cross–power spectrum Sv1v2(ω) of the received volt-
ages v1(t) and v2(t), which forms a Fourier transform pair with the cross–
correlation Rv1v2(τ), i.e., Rv1v2(τ) ⇔ Sv1v2(ω), where ω is the angular fre-
quency. Using the Fourier transformation equation (55), and the shift theo-
rem given in equation (68), we have

Sv1v2(ω) =

∞
∫

−∞

Rv1v2(τ) e
−iωτ dτ
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=

∞
∫

−∞





∞
∫

−∞

∞
∫

−∞

REE(τ − τg − α+ β) q(α) q(β) dαdβ



 e−iωτ dτ

=







∞
∫

−∞





∞
∫

−∞

∞
∫

−∞

REE(τ ′ − α + β) q(α) q(β) dαdβ



 e−iωτ
′

dτ ′







e−iωτg

=





∞
∫

−∞

REE(τ ′) ∗ q(τ ′) ∗ q(−τ ′) e−iωτ ′ dτ ′


 e−iωτg .

Furthermore, let us introduce the power spectrum SEE(ω) of the incident
electric field intensity E(t), SEE(ω) ⇔ REE(τ):

SEE(ω) =

∞
∫

−∞

REE(τ) e−iωτdτ, (93)

and the system function Q(ω) of the impulse responce q(t), Q(ω) ⇔ q(t):

Q(ω) =

∞
∫

−∞

q(t)e−iωtdt. (94)

Note that SEE(ω) is a real and even function of ω, since E(t) is a real process,
and also Q∗(ω) = Q(−ω) for the real impulse response q(t).

Then, in view of the convolution theorem in the Fourier transformation
(see equations (66) and (72)), we obtain

Sv1v2(ω) = SEE(ω)Q(ω)Q(−ω) e−iωτg = SEE(ω) | Q(ω) |2 e−iωτg . (95)

Applying the inverse Fourier transformation to this equation, we obtain
a formula for the cross–correlation Rv1v2(τ):

Rv1v2(τ) =
1

2π

∞
∫

−∞

Sv1v2(ω) eiωτdω =
1

2π

∞
∫

−∞

SEE(ω) | Q(ω) |2 eiω(τ−τg)dω.

(96)
Taking τ = 0 in this equation, we obtain

R ∼= Rv1v2(0) =
1

2π

∞
∫

−∞

SEE(ω) | Q(ω) |2 e−iωτgdω. (97)

This is an equation which gives a relation between the expectation of the
correlator output 〈R〉 = Rv1v2(0) of our simple interferometer, and the spec-
trum of the radio wave coming from an astronomical source SEE(ω), filtered
by the frequency response | Q(ω) |2 of the antenna–receiver systems.
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As the simplest case of the frequency response | Q(ω) |2, let us assume a
rectangular filter:

| Q(ω) |2=











G if ω0 − ∆ω
2

≤| ω |≤ ω0 + ∆ω
2
,

0 otherwise,
(98)

where ω0 is the band–center angular frequency, ∆ω is the bandwidth in
angular frequency, and G is a constant coefficient, as shown in Figure 15. On

ω 0−ω 0 0

∆ω∆ω

ω

G

|Q(ω)|2

Figure 15: Rectangular frequency response of the antenna–receiver system.

the other hand, we can assume, for a continuum spectrum source, that the
power spectrum of the radio wave SEE(ω) is flat, or “white–noise”, in the
filter passband:

SEE(ω) = S(ω0) = S(−ω0) = const. (99)

In such a case, from equations (97), (98) and (99), the expectation of the
correlator output R is expressed as:

〈R〉 =
1

π
<




∞
∫

0

SEE(ω) | Q(ω) |2 e−iωτgdω




=
S(ω0)G

π
<









ω0+∆ω
2

∫

ω0−
∆ω
2

e−iωτg dω









=
S(ω0)G

π
<









e−iω0τg

∆ω
2
∫

−∆ω
2

e−iω
′τg dω′









= 2B S(ω0)G
sin(πBτg)

πBτg
cos(ω0τg), (100)
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where < stands for the real part of the complex quantity, B = ∆ω/(2π) is
the frequency bandwidth, and ω′ is chosen to satisfy ω = ω0 +ω′. In deriving
the above equation, we used a well–known integration formula:

1

2

x
∫

−x

e−ix
′

dx′ = sin x.

A function of a form
sin x

x
is known as “sinc function”.

1.3.4 Fringe Pattern Enclosed by Bandwidth Pattern
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Figure 16: A normalized white fringe of a noise signal limited within a rect-
angular frequency band of width B, equal to 10 % of central frequency (solid
line). Horizontal axis shows Bτg, i.e. the geometric delay multiplied by the
bandwidth. Also shown by dashed lines is the behaviour of the 1/(πBτg)
term which quickly supresses the fringe amplitude with increasing τg.

Figure (16) shows the expectation of the correlator output 〈R〉 of a white
noise signal from the radio source, which is limited within a rectangular
passband of width B, according to equation (100). The vertical axis shows
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amplitude normalized by 2B S(ω0)G, and the horizontal axis shows the ge-
ometric delay τg normalized by 1/B, i.e., Bτg. In this figure, the bandwidth
B is chosen to be equal to 10 % of the central frequency (B = 0.1ω0/2π).
We again have a fringe pattern cos(ω0τg) enclosed by an envelope, which, in
this case, has a sinc function form, and takes the maximum value at τg = 0.
The enclosed fringe pattern, obtained from the band–limited white noise
spectrum, is called the “white fringe”.

τg

coherence interval

correlation peak
bandwidth pattern

fringe pattern

fringe spacing

Figure 17: Technical terms describing the white fringe.

Figure 17 shows basic characteristics of the white fringe. The envelope,
enclosing the rapidly oscillating fringe pattern, is called “bandwidth pattern”.
A particular case of the rectangular band gives the sinc function pattern, as
we saw already. Other band shapes give different shapes of the bandwidth
pattern. But in any case, we always have the common feature, that the
interferometric fringes of finite amplitude are obtained within a limited range
of the geometric delay, enclosed by a bandwidth pattern, as far as the noise
signal is band–limited.

Such a limited range of the geometric delay ∆τB, where the fringe pattern
has finite amplitude, is called “coherence interval”, and is roughly represented
by an equation ∆τB = 2/B, where B, in a general band–shape case, is a
quantity which effectively characterizes a bandwidth.

The fringe spacing ∆τF , in terms of the geometric delay, is determined
by a condition ω0∆τF = 2π, therefore, ∆τF ' 1/ν0.

The peak of the bandwidth pattern, which gives a precise observable
for the geodetic VLBI, is called “correlation peak”. Of course, the peak
is the sharper, the wider the bandwidth B, and therefore the narrower the
coherence interval is (see Figure 18).
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Figure 18: White fringes with ceter frequency 8 GHz and various bandwidths:
B = 8 MHz (top), B = 80 MHz (middle), and B = 800 MHz (bottom).
Horizontal axes show geometric delays covering a range from −30 to 30 nsec.
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1.3.5 Amplitude and Phase Spectra of the Correlated Signals

Equation (95) shows, that the cross–power spectrum Sv1v2(ω) of the voltage
signals v1(t) and v2(t), received by two antennas, is described through the
power spectrum SEE(ω) of the radio wave coming from a source, and the fre-
quency response, assumed rectangular here, of the antenna–receiver system
| Q(ω) |2, as:

Sv1v2(ω) = SEE(ω) | Q(ω) |2 e−iωτg .
Therefore, if we assume that the real, and even, power spectrum SEE(ω)

0

0 ω

ω

A(ω)

Φ(ω)

∆ω∆ω

ω0ω0-
Θ

Figure 19: Amplitude (top) and phase (bottom) spectra of the cross–power
spectrum.

is nearly constant in the receiving frequency band, the amplitude A(ω) and
phase Φ(ω) of the cross–power spectrum, which we define as

Sv1v2(ω) = A(ω)e−iΦ(ω), (101)

are expressed as:

A(ω) = SEE(ω) | Q(ω) |2∼= const, (102)

Φ(ω) = ωτg, (103)

within the passband (see Figure 19). Note, that the phase spectrum is ex-
pressed by a straight line, crossing the origin and having an inclination tanΘ,
which is equal to the geometric delay τg, i.e., tan Θ = τg, in the present sim-
ple interferometer model. This is a general feature of the phase spectra of
the continuum spectrum sources observed by interferometers.
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1.3.6 Coherence Interval in the Sky

The coherence interval ∆τB = 2/B, in terms of the geometric delay, corre-
sponds to a certain angular extent ∆θB in the sky (Figure 20). Following the
assumption we made earlier, we consider only a region of the sky which is
close to the direction perpendicular to the baseline of an interferometer with
length D.

∆θB

Figure 20: Coherence interval in the sky.

For a source in the sky, which is separated from a plane perpendicular to
the baseline by an angle θ, the geometric delay τg is equal to

τg =
D sin θ

c
, and, hence, θ = arcsin

(

c τg
D

)

, (104)

where c is the light velocity. Therefore, the angular extent ∆θB is

∆θB = 2 arcsin
(

c∆τB
2D

)

' c∆τB
D

=
2c

DB
. (105)

The coherence intervals for several values of D and B are listed in Table 1.
It is evident from this table that the coherence interval in the sky is fairly
narrow for modern interferometers, especially for VLBI. Therefore, the pas-
sive observational mode, which would just “wait for” the passage of a source
through the narrow coherence interval with τg ≈ 0, is extremely ineffective
and unrealistic, except in the “classical” systems with ∼ 100 m, or shorter,
baselines and ∼ a few MHz, or narrower, bandwidths. Consequently, modern
radio interferometers are usally equipped with a special mechanism, which
compensates the delay, by time–shifting one of two received signals, so that
the signals corresponding to the same wave front are fed to the correlation
processing simultaneously, as we will see later.
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bandwidth B 200 kHz 2 MHz 200 MHz 2 GHz

∆τB 10 µsec 1 µsec 10 nsec 1 nsec

∆θB

D = 100 m > 180◦ > 180◦ 1.◦7 0.◦17

D = 10 km 17◦ 1.◦7 1.′0 6.′′2

D = 1000 km 0.◦17 1.′0 0.′′62 0.′′062

Table 1: Coherence interval values for various baseline length D and band-
width B.

In VLBI, it is very important to know accurate positions of the radio
sources and accurate coordinates of the baseline vectors, for successful pre-
diction and compensation of the delay, which allow us to detect the fringe
within the quite narrow coherence interval.

1.3.7 Fringe Spacing in the Sky

diurnal motion

∆θ
fringe spacing

F

Figure 21: Fringe spacing in the sky.

Since the fringe spacing is ∆τF = 1/ν0, in terms of the geometric delay,
equation (104) gives the fringe spacing in the sky ∆θF , in the direction nearly
perpendicular to the baseline, as:

∆θF =
λ0

D
, (106)

where λ0 = c/ν0 is the wave length at the central frequency ν0 of the receiving
band (see Figure 21 and Table 2).
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central frequency ν0 100 MHz 10 GHz 100 GHz

wave length λ0 3 m 3 cm 3 mm

D = 100 m 1.◦7 1.′0 6.′′2

D = 10 km 1.′0 0.′′62 0.′′062

D = 1000 km 0.′′62 0.′′0062 0.′′00062

Table 2: Fringe spacing values for various baseline length D and central
frequency ν0.

The angular resolution of an interferometer is usually expressed by equa-
tion (106), since the resolution is essentially determined by the fringe spacing.

Since every radio source diurnally moves across the dense fringe pattern
in the sky with the very short fringe spacing, the phase of the cosine term
ω0τg in equation (100) changes very rapidly. Therefore, the correlator output
of the signals of our simple interferometer must oscillate also very rapidly.
This would make mostly impossible to integrate the multiplier output for
a duration of time, which is long enough to detect the white fringe with a
sufficiently high signal–to–noise ratio, since any simple time averaging (inte-
gration) of an oscillating signal results in almost zero signal only (Figure 22).
Therefore, modern radio interferometers are usually equipped with a special
mechanism to compensate (or stop) the rapid phase change, as we will see
later.

T

t0

Figure 22: What will come out, if we integrate (time average) this?

2 A Realistic Radio Interferometer

The simple interferometer, which we discussed in the previous section, was
helpful for understanding one of the most important concepts for radio inter-
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ferometry, the white fringe. Nevertheless, the simple model is far from real
modern radio interferometers in following aspects.

First, radio sources are not mere points. They usually show structures,
or intensity distributions, in the sky. One of the main purposes of the VLBI,
or radio interferometry in general, is to obtain images of the radio source
structures. But if the source is not point–like, the delayed voltage model
in equation (86), which was described through a single geometric delay of
a point source, must be no longer valid. Moreover, if the source structures
are extended, we have to take into account the beam patterns of element
antennas, as well.

   Local
Oscillator

Beam 
Pattern 2

Beam 
Pattern 1

Receiver 2Receiver 1

D

s0

cτ
g =

 D
  s

0.

Integrator
Multiplier

τi

Mixer

Instrumental
Delay

Extended Source

Source structure
and different     
antenna-receiver
characteristics

Frequency
conversion

Compensation of
delay and phase
change

Correlator

Figure 23: A realistic interferometer.

Second, the antennas and receiving systems in a radio interferometer are
not identical, in general. Therefore, the beam patterns and the frequency
responses of the antenna–receiver systems may differ from each other, unlike
in the simple interferometer model.

Third, receiving systems in modern interferometers are usually based on
the superheterodyne design, and correlation processings are performed for IF
(intermediate frequency) signals after the frequency conversion, but not for
RF signals, as assumed in the simple interferometer model.
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Finally, we have to introduce the special mechanisms in order to com-
pensate the geometric delay and the rapid phase change in the correlator
output, as we noted in the last two paragraphs of the previous section. This
should be done so that we can always observe a radio source whenever it is
above the horizon, but not just within a very short duration of time, while
the source happenes to pass the very narrow coherence interval.

However, we still neglect, for a while, atmospheric and instrumental de-
lays, other than the geometric delay. Also, we ignore, as before, any con-
tribution of the system noise, in order to concentrate our attention to the
characteristics of the correlated radio source signals only.

Figure 23 illustrates a “more realistic” 2–element interferometer. In the
following subsections, we will examine effects of the source structure and
diffferent antenna–receiver characteristics, the frequency conversion, and the
compensation of the delay and the phase change, in turn.

2.1 Source Structure, Visibility and Intensity

2.1.1 Source Coherence Function

How the correlator output of an interferometer is related to the intensity (or
brightness) distribution of a radio source in the sky?

In order to answer to this question, we must consider how the electro-
magnetic field from a source, which is received and converted to the voltage
signal by each antenna of the interferometer, is related to the intensity dis-
tribution of the source. For this purpose, we first address ourselves to a
problem regarding properties of radio waves from an extended radio source,
namely, whether radio waves coming from different points of a radio source
are mutually correlated, or not.

Let us choose a certain direction in the source (for example, the direction
of the maximum intensity), which is denoted by a unit vector s0, as a refer-
ence direction. Then a unit vector s, pointing towards an arbitrary direction
in the source, may be expressed as s = s0 + σ, and we can use the “offset
vector from the reference direction” σ ≡ s− s0, as a vector, which is almost
confined in the celestial sphere and indicates the direction s. See Figure 24
for the geometry.

As a quantity representing the electromagnetic wave from the source, we
again choose a single polarization component of the electric field intensity
E(t), to be received by the antennas. Since the source is now extended, we
denote a component of the electric field intensity, which comes from a unit
solid angle around a direction σ, as e(σ, t). Then the incident electric field

63



s0

s’

s
σ ’

e(σ ’,t’)

e(σ ,t)

σ

Figure 24: Radio waves coming from different directions in a radio source.

from the whole source E(t) is expressed through e(σ, t) as

E(t) =
∫

source

e(σ, t)dΩ, (107)

where dΩ is an infinitesimal solid angle element. Now, let us consider a
cross–correlation of electric field components e(σ, t) and e(σ ′, t′), coming
from different directions σ and σ

′, and taken at different times t and t′:

〈e(σ, t) e(σ′, t′)〉,
(see Figure 24).

Assuming again that e(σ, t) and e(σ′, t′) are jointly stationary random
processes, we express the cross–correlation as a function of time difference
τ = t− t′:

γ(σ,σ′, τ) = 〈e(σ, t) e(σ′, t′)〉. (108)

This function γ(σ,σ′, τ) is called “source coherence function”.
Using this source coherence function, we define a cross–correlation coef-

ficient , which is called “normalized source coherence function”:

γN(σ,σ′, τ) =
γ(σ,σ′, τ)

√

γ(σ,σ, 0)γ(σ′,σ′, 0)
, (109)

(here, we assume that the expectation of the electric field 〈e(σ, t)〉 = 0, and,
therefore, the cross–correlation is equal to the cross–covariance). According
to the general property of the cross–correlation coefficient, the normalized
source coherence function always satisfies

0 ≤| γN(σ,σ′, τ) |≤ 1.
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Now we use following definitions.

1. Radio waves from different directions σ and σ
′ are called “completely

coherent” if | γN(σ,σ′, τ) |= 1 for any τ , and “completely incoherent”
if | γN(σ,σ′, τ) |= 0 for any τ .

2. A radio source is called “coherent” if radio waves from any different
directions σ and σ

′ in the source are completely coherent, and “inco-
herent” if the waves are completely incoherent. In all other cases, the
radio source is called “partially coherent”.

If someone puts many transmission antennas in a town, and broadcasts a
TV programm, then any “poor–reception–level” problem would simply dis-
appear. Instead, however, we would suffer from a serious “ghost” problem,
since TV signals from different antennas are mutually coherent. The “ghost”
images would drastically change when we slightly shift or rotate our TV re-
ception antenna to an extent, comparable with the wavelength of the TV
signal. Therefore, it would even become difficult to know directions of trans-
mission antennas in the easy way, by just rotating the reception antenna
and watching the screen. But if the TV broadcasting is turned off, and only
incoherent (independent) noises are emitted from transmission antennas, it
would get much easier to know their directions.

Fortunately, most of actual astronomical radio sources are known to be
incoherent, and, therefore, can be imaged relatively simply. This is because
radio waves emitted from the source regions are just mutually independent
noises generated by random microscopic processes occuring there. Therefore,
in following discussions, we assume that radio sources are incoherent.

Then, the source coherence function must be expressed as

γ(σ,σ′, τ) = γ(σ, τ)δ(σ − σ
′), (110)

since radio waves from directions σ and σ
′ are correlated only when σ = σ

′.
The function γ(σ, τ), defined by equation (110), is called “self–coherence
function”.

2.1.2 Power of Electric Field Incident from a Certain Direction

The autocorrelation of the electric field E(t) is expressed through the self–
coherence function as:

〈E(t)E(t′)〉 =
∫ ∫

source

〈e(σ, t)e(σ′, t′)〉dΩdΩ′

=
∫ ∫

source

γ(σ, τ)δ(σ − σ
′)dΩdΩ′ =

∫

source

γ(σ, τ)dΩ. (111)
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Therefore, we obtain, for a mean square value of the electric field E(t),

〈E(t)2〉 =
∫

source

γ(σ, 0)dΩ, (112)

which implies that γ(σ, 0) is a “density per solid angle” of the mean square
electric field in the direction of σ.

Consequently, if we consider a total electric field vector E(t), which comes
from a small solid angle element ∆Ω towards a direction σ, and includes both
of the two independent polarization components, then its mean square value
(or power) is related to the self–coherence function at τ = 0 as:

1

2
〈| E(σ) |2〉 = γ(σ, 0) ∆Ω, (113)

where the coefficient 1 / 2 corresponds to the fact that γ(σ, 0) includes only
a single polarization component of the electric field.

2.1.3 Poynting Flux

Now we proceed to the relation between the incident electric field and the
source intensity (or brightness) distribution. First, we consider a quantity,
characterizing the incident electromagnetic wave, which we call “Poynting
flux through a cross section”.

Let us consider the Poynting vector S(σ) of an electromagnetic wave,
which comes from the same small solid angle element ∆Ω towards the di-
rection σ, as in equation (113). Let ∆Ω be small enough that the wave is
well approximated by a superposition of monochromatic plane waves prop-
agating along the same direction, with individual frequencies contained in a
finite bandwidth of the incident wave.

As we saw in Chapter 2, the Poynting vector Sm(σ) of a monochromatic
plane wave is given, in terms of the corresponding electric field intensity
Em(σ), by an equation:

Sm(σ) =
1

Z
n | Em(σ) |2, (114)

where Z is the intrinsic impedance of the medium, and n = −s = −(s0 +σ)
is a unit vector along a direction of the wave propagation.

The term | Em(σ) |2, in equation (114), corresponds to a power of the
electric field, contained within an infinitesimally narrow frequency band of
a monochromatic plane wave. Such a power is equal to the power spectrum
at the frequency of the band, multiplied by the bandwidth, as we discussed
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in subsection 1.2.8. On the other hand, the power | E(σ) |2, contained in a
finite bandwidth, is simply equal to the integral of the power spectrum over
the bandwidth. Hence, we obtain the power | E(σ) |2, by just summing up
all monochromatic plane wave components | Em(σ) |2 over the bandwidth:

| E(σ) |2=
∑

| Em(σ) |2 .
Meanwhile, the Poynting vector S(σ), with the finite bandwidth, is a

vector sum of all monochromatic plane wave components Sm(σ):

S(σ) =
∑

Sm(σ).

Therefore, an equation, with the same form as the one in the monochro-
matic plane wave case, given in equation (114), holds also for the Poynting
vector S(σ) and the power of the electric field | E(σ) |2, having the finite
bandwidth:

S(σ) =
1

Z
n | E(σ) |2 . (115)

Let us now consider “Poynting flux through a cross section”, or simply
“Poynting flux”, which we define as equal to the energy of the electromagnetic
wave passing through a certain cross section of unit area, per unit duration

nN

∆Ωσ

s 0

S( )σθ

s

Figure 25: Poynting flux through a cross section.

of time. If we denote a unit vector normal to the cross section as N , the
Poynting flux of the wave coming from the direction σ is given by a projection
of the Poynting vector on the direction N :

S(σ) · N =
1

Z
| E(σ) |2 cos θ, (116)
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where θ is an angle between the normal unit vector N of the cross section
and the direction n of the wave propagation (see Figure 25).

Now we consider the Poynting flux S of the wave not only from a small
solid angle towards σ, but from the all source area:

S =
∑

n

S(σn) · N =
1

Z

∑

n

| E(σn) |2 cos θn, (117)

where
∑

n

means a summation of all small solid angle elements towards direc-

tions σ1,σ2, · · · ,σn, · · ·, covering the whole source area, and θn is an angle
between the normal to the cross section N and the direction of propagation
nn = −(s0 + σn).

Combining this equation with equation (113), we obtain an equation re-
lating a mean Poynting flux to the self–coherence function:

〈S〉 =
1

Z

∑

n

〈| E(σn) |2〉 cos θn =
2

Z

∑

n

γ(σn, 0) cos θn∆Ωn, (118)

where ∆Ωn is a small solid angle element towards a direction σn. If we replace
the summation, with respect to the small solid angles, by an integration, the
relation between the mean Poyinting flux 〈S〉 and the self–coherence function
γ(σ, τ) is given by:

〈S〉 =
2

Z

∫

source

γ(σ, 0) cos θdΩ. (119)

If we further introduce the Fourier transform γ̃(σ, ω) of the self–coherence
function γ(σ, τ) in the angular frequency ω space, i.e., γ(σ, τ) ⇔ γ̃(σ, ω):

γ̃(σ, ω) =

∞
∫

−∞

γ(σ, τ) e−iωτdτ, (120)

γ(σ, τ) =
1

2π

∞
∫

−∞

γ̃(σ, ω) eiωτdω,

then, we have

γ(σ, 0) =

∞
∫

−∞

γ̃(σ, ω) dν,

where ν is a frequency corresponding to the angular frequency ω, i.e., ν =
ω/(2π). Since Fourier transform of a real function is an even function of the
frequency, γ(σ, 0) is also given as:

γ(σ, 0) = 2

∞
∫

0

γ̃(σ, ω) dν. (121)
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Therefore, the mean Poynting flux in equation (119) is now given as:

〈S〉 =
4

Z

∞
∫

0

∫

source

γ̃(σ, ω) cos θ dΩ dν. (122)

2.1.4 Electric Field and Radio Source Intensity — Electromag-
netics and Astronomy

As we saw in Chapter 1, results of radio astronomical observations are char-
acterized by a number of quantities, such as, “intensity” Iν, “spectral flux
density” Sν, and “power flux density” S. These quantities are phenomeno-
logically defined in astronomy. For example, the intensity is defined as “the
quantity of radiation energy incoming from a certain direction in the sky,
per unit solid angle, per unit time, per unit area perpendicular to this di-
rection, and per unit frequency bandwidth with center frequency ν”. As we
see, no electromagnetic quantity, such as electric field intensity E, or volt-
age v, appears in such a phenomenological definition. Therefore, we must
precisely define a certain relationship between the electromagnetic and ra-
dioastronomical quantities, in order to describe radioastronomical results in
terms of the electromagnetic quantities, which we actually measure in our
radio telescopes.

Such a relationship was defined by IEEE (Institute of Electrical and Elec-
tronics Engineers) in 1977. According to the definition, the power flux density
in astronomy is equal to the time average of the Poynting vector in electro-
magnetics.

The power flux density S is defined in astronomy as “the quantity of
radiation energy, over the whole frequency range, incoming through a cross
section of unit area, per unit time”. This quantity is related to the spectral
flux density Sν , and to the intensity Iν as:

S =

∞
∫

0

Sν dν =

∞
∫

0

∫

source

Iν(σ) cos θ dΩ dν, (123)

because the spectral flux density is defined as “the quantity of radiation
energy incoming through a cross section of unit area, per unit frequency
bandwidth, and per unit time”, and the intensity is defined as we saw above.

Since the power flux density is given with respect to a certain cross section
of unit area, we interpret the “Poynting vector”, in the IEEE definition as a
Poynting flux, through the cross section.

Then, the definition of IEEE (1977) requires that the mean Poynting flux
〈S〉 must be equal to the power flux density S:

〈S〉 = S, (124)

69



since, in view of the Ergodicity, the time average must be equal to the statis-
tical mean, provided that the averaging time is sufficiently long. Therefore,
from equations (122) and (123), we have

∞
∫

0

∫

source

Iν(σ) cos θ dΩ dν =
4

Z

∞
∫

0

∫

source

γ̃(σ, ω) cos θ dΩ dν. (125)

Generally speaking, equal integrals do not necessarily mean equal inte-
grands, of course. However, in our case of the stationary random signal from
an incoherent source, we can equate integrands of the both sides of equation
(125). In fact, the total power of the electric field intensity is simply equal
to a sum of contributions from all elements in frequency bands and spa-
tial solid angles. To make this point more evident, let us imagine a virtual
source which emits radiation only in limited frequency and spatial solid–angle
ranges of the actual radio source. The average Poynting flux and the power
flux density from this virtual source are equal to those of the actual source
in the respective frequency and solid–angle ranges. They must be expressed
through the self–coherence function and the intensity, just in the same forms
as those given in equations (122) and (123), but with limited frequency and
solid–angle ranges of the integrations. Since the definition of IEEE (1977)
requires their equality, for this virtual source as well, equation (125) must
hold for arbitrary frequency range ∆ν and arbitrary spatial solid–angle range
∆Ω, i.e.,

∫

∆ν

∫

∆Ω

Iν(σ) cos θ dΩ dν =
4

Z

∫

∆ν

∫

∆Ω

γ̃(σ, ω) cos θ dΩ dν,

which implies that the integrands must be equal to each other. Therefore,
we have

Iν(σ) =
4

Z
γ̃(σ, ω). (126)

This is a relation between the source intensity distribution and the spectrum
of the self–coherence funtion, which is the density per solid angle of the power
of the incident electric field, as we saw before. Thus, we succeeded to relate
the source intensity distribution in astronomy to the incident electric field in
electromagnetics.

2.1.5 Field of View of a Radio Telescope

The incident electric field is converted to the voltage in a radio telescope an-
tenna, and this voltage is actually processed in our detecting devices (square–
law detectors, or correlators). Then, how can we relate the received voltage
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v(t) to the source intensity distribution? Here, we must take into account
that an antenna collects electric fields, coming from different directions in a
radio source, weighting them according to its beam pattern, specifically the
voltage reception pattern, which we saw in Chapter 2. This “field of view”
effect must be properly corrected for, prior to infering the source intensity
distribution from detected signals (Figure 26).

s0

s’

s σ
σ ’

e(σ ’,t’)

e(σ ,t)

Voltage reception pattern

v(t)

Figure 26: Voltage reception pattern.

In order to consider this problem, it is convenient to move from the time
domain to the frequency domain, since, as we saw in Chapter 2, the beam
pattern of an antenna is a function of frequency (the beam width is roughly
proportional to ν−1).

Let us consider Fourier transforms ẽ(σ, ω) and ṽ(ω) of the single polar-
ization component of the electric field intensity e(σ, t), coming from a unit
solid angle of direction σ, and the received voltage v(t), respectively.

ẽ(σ, ω) =

∞
∫

−∞

e(σ, t)e−iωtdt, (127)

ṽ(ω) =

∞
∫

−∞

v(t)e−iωtdt. (128)

Since we assume that the electric field intensity e(σ, t) and the received
voltage v(t) are stationary random processes, these are examples of the
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Fourier transforms of stationary random processes, which we discussed in
subsection 1.2.9.

Without being involved in details of electromagnetics on wave reception,
we just assume that the received voltage at a certain frequency is proportional
to incident electric field intensity collected by the antenna beam at the same
frequency. Then, we introduce the voltage reception pattern Q(σ, ω) as a
function relating ṽ(ω) and ẽ(σ, ω) through an equation:

ṽ(ω) =
∫

source

ẽ(σ, ω)Q(σ, ω) dΩ. (129)

Note that the voltage reception pattern thus defined has a dimension of
length (unit of voltage is V and unit of electric field intensity is Vm−1).
The voltage reception pattern is, in general, a complex quantity, since the
reception process might be associated with some energy dissipation.

2.1.6 Power Pattern of a Receiving Antenna

Let us now establish a relationship between the voltage reception pattern,
as defined in equation (129), and the power pattern of a receiving antenna,
which we empirically introduced in Chapter 2. Although this is a topic
related to a single–dish radio telescope, following discussions will serve as
useful preparations for further considerations of interferometers.

If we denote a resistance in the circuit of the receiving system as R, then
averaged power W and received voltage v(t) are related to each other by an
equation:

W =
〈v2〉
R
. (130)

Introducing an autocorrelation Rvv(τ):

Rvv(τ) = 〈v(t) v(t′)〉, (131)

and power spectrum Svv(ω):

Svv(ω) =

∞
∫

−∞

Rvv(τ)e
−iωτdτ, (132)

Rvv(τ) =
1

2π

∞
∫

−∞

Svv(ω)eiωτdω, (133)

of the received voltage v(t), we reexpress equation (130) as

W =
Rvv(0)

R
=

2

R

∞
∫

0

Svv(ω) dν. (134)
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Hence, the power per unit frequency bandwidth Wν, which satisfies

W =

∞
∫

0

Wν dν,

is given by

Wν =
2

R
Svv(ω). (135)

Now, let us express the power spectrum Svv(ω) in terms of the incident
electric field intensity. For this purpose, we first calculate the autocorrelation
of the Fourier transform ṽ(ω) of the received voltage v(t). In view of equation
(129), we have

〈ṽ(ω)ṽ∗(ω′)〉 =
∫ ∫

source

〈ẽ(σ, ω)ẽ∗(σ′, ω′)〉Q(σ, ω)Q∗(σ′, ω′)dΩdΩ′. (136)

Here, the cross–correlation 〈ẽ(σ, ω)ẽ∗(σ′, ω′)〉 of the Fourier transforms of
the incident electric field intensities, must be in a form:

〈ẽ(σ, ω)ẽ∗(σ′, ω′)〉 = 2πγ̃(σ, σ
′, ω) δ(ω − ω′), (137)

since we assume them as stationary random processes, which satisfy equation
(83). In the right hand side of equation (137), we introduced a cross–power
spectrum γ̃(σ, σ

′, ω) of the electric field intensities, which is the Fourier
transform of the source coherence function γ(σ, σ

′, τ), as defined in equation
(108).

Since we assume an incoherent source, the source coherence function is
expressed through the self–coherence function γ(σ, τ), as given in equation
(110). Therefore, the cross–power spectrum must be given as:

γ̃(σ, σ
′, ω) = γ̃(σ, ω) δ(σ − σ

′). (138)

Hence, equation (137) is rewritten as:

〈ẽ(σ, ω)ẽ∗(σ′, ω′)〉 = 2πγ̃(σ, ω)δ(σ − σ
′)δ(ω − ω′). (139)

Inserting this equation to equation (136), we obtain

〈ṽ(ω)ṽ∗(ω′)〉 = 2π





∫

source

γ̃(σ, ω) | Q(σ, ω) |2 dΩ


 δ(ω − ω′). (140)

Now, on the other hand, the autocorrelation 〈ṽ(ω)ṽ∗(ω′)〉 must also be
expressed through the power spectrum Svv(ω) of the voltage as:

〈ṽ(ω)ṽ∗(ω′)〉 = 2πSvv(ω)δ(ω − ω′), (141)
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in view of equation (82), which is a general property of Fourier transforms
of the stationary random processes. Thus, from equations (140) and (141),
we obtain

Svv(ω) =
∫

source

γ̃(σ, ω) | Q(σ, ω) |2 dΩ, (142)

or, taking into account equations (126) and (135),

Wν =
Z

2R

∫

source

Iν(σ) | Q(σ, ω) |2 dΩ. (143)

Equation (143) must be equivalent to the equation

Wν =
1

2
Ae

∫

source

Iν(σ)Pn(σ)dΩ, (144)

which we introduced in Chapter 2, in order to express the power per unit
bandwidth received by an antenna with a normalized power pattern Pn(σ)
and an effective aperture Ae. Noting again, that we can select arbitrary solid
angle as the source range, we can equate integrands of equations (143) and
(144), to obtain

| Q(σ, ω) |2= R

Z
AePn(σ). (145)

This is the relation between the voltage reception pattern and the normalized
power pattern.

From equations (126) and (145), the power spectrum of the received volt-
age in equation (142) is now given as:

Svv(ω) =
1

4
Ae

∫

source

Iν(σ)Pn(σ) dΩ. (146)

2.1.7 New Dimensions of Voltage and Electric Field

For further discussions, it is convenient to redefine the volatage and the
electric field intensity as

v(t)√
R

−→ v(t),

e(σ, t)√
Z

−→ e(σ, t), (147)

to eliminate constant coefficients of the resistance R and the intrinsic impedance
Z, which may cause rather complicated appearances of our equations. Then,
dimensions of the voltage and the electric field intensity change to
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• voltage v [electric power]1/2 (W1/2)

• electric field intensity e [power flux density]1/2 (W1/2 m−1),

and we have

Svv(ω)

R
−→ Svv(ω),

γ̃(σ, ω)

Z
−→ γ̃(σ, ω), (148)

for the power spectra of the voltage and the electric field intensity.
Let us further redefine the voltage reception pattern as

√

Z

R
Q(σ, ω) −→ Q(σ, ω). (149)

Then, the voltage — field relation remain in the same form as equation (129):

ṽ(ω) =
∫

source

ẽ(σ, ω)Q(σ, ω)dΩ,

and we obtain simple expressions:

Wν = 2Svv(ω),

Iν(σ) = 4γ̃(σ, ω),

AePn(σ) = | Q(σ, ω) |2,
(150)

for the power per unit bandwidth, the source intensity, and the normalized
power pattern.

2.1.8 How Does A Radio Interferometer View the Universe?

A radio interferometer can be regarded as an instrument which yields a cross–
correlation or a cross–power spectrum of voltages received at antennas. We
consider now the cross–correlation and cross–power spectrum of the voltages
“just received”, which we will call hereafter “received voltages”. Although
actual correlation processing is performed for voltages after frequency conver-
sion and compensation of the delay and the phase change, present discussion
is quite meaningful, since the final results are described through the spectrum
of the received voltages, as we will see later.

Let us again consider a two–element interferometer, such as shown in
Figure 27. Let a baseline vector D be drawn from antenna 1 to antenna 2,
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D

s = s0 + σ

τ g

s0

σ

1 2

(σ)

Figure 27: Geometry of a two element radio interferometer.

and let a unit vector s = s0 + σ point towards a certain direction within a
radio source, where s0 shows a reference direction of the source, as before.

Then, the geometric delay, between arrivals of the same wave front from
the direction s at two antennas, is given by

τg(σ) =
D · s
c

= τg0 +
D · σ
c

, (151)

where c is the light velocity, τg0 ≡
D · s0

c
is a geometric delay of the wave

coming from the reference direction s0, and we use the offset vector σ = s−s0

for denoting the direction s within the source. For simplicity, we ignore here
any atmospheric or instrumental delay effect, other than the geometric delay.

Now, the electric field intensities e1(σ, t) and e2(σ, t), with a single po-
larization component, which arrive at two antennas at a certain time t from
the same direction σ, are described through a common incident field intensity
e(σ, t), representing the same wave front, as

e1(σ, t) = e(σ, t− τg(σ)),

e2(σ, t) = e(σ, t).
(152)

Therefore, their Fourier transforms ẽ1(σ, ω) and ẽ2(σ, ω) are given by

ẽ1(σ, ω) = ẽ(σ, ω)e−iωτg(σ),

ẽ2(σ, ω) = ẽ(σ, ω),
(153)

where ẽ(σ, ω) is the Fourier transform of e(σ, t). We used equation (68) of
the shift theorem, in deriving the upper equation of equation (153).

76



These electric field intensities are converted to voltages at the two anten-
nas:

ṽ1(ω) =
∫

source

ẽ1(σ, ω)Q1(σ, ω)dΩ,

ṽ2(ω) =
∫

source

ẽ2(σ, ω)Q2(σ, ω)dΩ, (154)

according to equation (129).
Therefore, their cross–correlation is given by

〈ṽ1(ω) ṽ∗2(ω
′)〉 =

∫ ∫

source

〈ẽ1(σ, ω)ẽ∗2(σ
′, ω′)〉Q1(σ, ω)Q∗

2(σ
′, ω′)dΩdΩ′.

(155)
In view of equation (153), we can here express the electric field intensities at
two antennas through the common incident electric field intensity ẽ(σ, ω):

〈ẽ1(σ, ω)ẽ∗2(σ
′, ω′)〉 = 〈ẽ(σ, ω)ẽ∗(σ′, ω′)〉e−iωτg(σ). (156)

Since the electric field is regarded as a stationary random process, and the
radio source is assumed to be incoherent, we have equation (139) again for
〈ẽ(σ, ω)ẽ∗(σ′, ω′)〉:

〈ẽ(σ, ω)ẽ∗(σ′, ω′)〉 = 2πγ̃(σ, ω) δ(σ − σ
′) δ(ω − ω′).

Therefore, the cross–correlation of the Fourier transforms of the received
voltages 〈ṽ1(ω) ṽ∗2(ω

′)〉 in equation (155) are now given by

〈ṽ1(ω) ṽ∗2(ω
′)〉 = 2π





∫

source

γ̃(σ, ω)Q1(σ, ω)Q∗
2(σ, ω)e−iωτg(σ) dΩ



 δ(ω − ω′).

(157)
On the other hand, since the voltages received at two antennas are jointly

stationary random processes (they originate from the same incident wave
front), the cross–correlation of their Fourier transforms and their cross–power
spectrum are related to each other by the general formula of equation (83):

〈ṽ1(ω) ṽ∗2(ω
′)〉 = 2πSv1v2(ω) δ(ω − ω′). (158)

From equations (157) and (158), we obtain

Sv1v2(ω) =
∫

source

γ̃(σ, ω)Q1(σ, ω)Q∗
2(σ, ω) e−iωτg(σ) dΩ. (159)
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Now, equation (150) shows that the Fourier transform γ̃(σ, ω) of the self–
coherence function and the source intensity Iν(σ) are related to each other
as

γ̃(σ, ω) =
1

4
Iν(σ).

Furthermore, equation (150) also shows that the voltage reception pattern
Q(σ, ω) and the normalized power pattern Pn(σ) of an antenna are related
to each other as

Ae Pn(σ) =| Q(σ, ω) |2,
where Ae is the effective aperture of the antenna. So, let us introduce here
an analog of this equation in an interferometer case:

A0AN(σ) = Q1(σ, ω)Q∗
2(σ, ω), (160)

where A0 is a geometrical mean of effective apertures of two antennas:

A0 =
√

Ae1 Ae2 , (161)

and AN (σ) is called “normalized power pattern of an interferometer”. When
the two voltage reception patterns Q1 and Q2 are real quantities (i.e., there is
no phase change associated with the field → voltage conversion), or they have
equal phases, AN (σ) is described through the normalized power patterns Pn1

and Pn2 of the respective single–dish antennas as:

AN(σ) =
√

Pn1(σ)Pn2(σ). (162)

Taking into account equations (150), (151) and (160), and denoting

ω
D · σ
c

= 2πDλ · σ, (163)

where Dλ = D/λ is the baseline vector normalized by the wavelength λ =
2πc/ω, we rewrite equation (159) in a form:

Sv1v2(ω) =
1

4
A0 e

−iωτg0

∫

source

AN(σ) Iν(σ) e−i2πDλ·σdΩ. (164)

This equation gives a relationship between the cross–power spectrum of the
received voltages and the intensity distribution of the radio source. This is
an interferometer analog of the power–spectrum — intensity relationship in
a single dish antenna, given in equation (146):

Svv(ω) =
1

4
Ae

∫

source

Pn(σ) Iν(σ) dΩ.
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In closing this subsection, it is worthwhile to notice an approximation
made in our treatment of the geometric delay. In deriving equation (153)
from equation (152), we implicitly assumed that the geometric delay τg is
constant in time, though, of course, the geometric delay must change in time
due to the diurnal motion of the Earth. Such a quasi–static approach is good
enough for our present purpose to understand basic features of radio interfer-
ometry, and we will continue to follow this approach hereafter. However, it
should be noted that the quasi–static approach does not allow us to properly
take account of some observable effects, such as Doppler shift in amplitude of
cross–power spectrum of a radio source due to the Earth’s rotation. Conse-
quently, formulae we provide here lack these effects. More complete account
of this problem will require some modification in our assumption of the sta-
tionary random natutre of the received signals.

2.1.9 Complex Visibility

The cross–power spectrum of the received voltages Sv1v2(ω) is an observable
quantity, which can be derived from the correlator output, as we will see
in more detail, later. Equation (164) shows that the cross–power spectrum
is a product of three terms: the geometric mean of the effective apertures
A0, the exponential term which depends on the geometric delay τg0 at the
reference direction s0 of the observed source, and an integral over the solid
angle of the source. The exponential term stands for the fringe pattern,
which we discussed in section 1.3. Therefore, the integral term figures as a
complex coefficient of the fringe pattern. We can derive this integral term
from the observed cross–power spectrum, since A0 is almost constant and can
be estimated independently, and the fringe pattern is known, as far as we
know the source direction and the baseline vector with sufficient accuracies.

We call the integral, or the complex coefficient of the fringe pattern,
“complex visibility”, “fringe visibility”, or just “visibility”, and denote it as
V(ω):

V(ω) =
∮

AN (σ) Iν(σ) e−i2πDλ·σ dΩ. (165)

Here, we expanded the range of integration from the source region to the
whole sky, since we expect Iν(σ) = 0 outside the source region, and radio
sources far from the antenna beam direction do not contribute to the integral,
simply because AN (σ) = 0 for those sources.

Equation (165) shows the relationship between the complex visibility and
the intensity distribution of the radio source. Amplitude | V(ω) | and phase
Φv of the complex visibility:

V(ω) =| V(ω) | eiΦv(ω), (166)
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are called “visibility amplitude” and “visibility phase”, respectively.
The complex visibility as shown in equation (165) has a dimension of the

flux density (w m−2 Hz−1). In fact, the complex visibility can be regarded as
an analog of the effective flux density Sν received by a single–dish antenna:

Sν =
∮

Pn(σ) Iν(σ) dΩ, (167)

which we introduced in Chapter 2. Thus, the visibility amplitude is also
called as “correlated flux density”.

Although equations (165) and (167) show similar forms, and the similarity
clearly comes from a common physical nature of the complex visibility and
the effective flux density, there is a big difference between these quantities,
as well. While angular resolution of a single–dish observation is determined
by the normalized power pattern of an antenna Pn(σ) in equation (167),
angular resolution of an interferometer observation is essentially determined

by e−i2πDλ·σ term in equation (165), which represents the fringe pattern
of the interferometer, but not by the normalized power patterns of element
antennas figuring in AN(σ). In this sense, the complex visibility could be
regarded as the “intensity collected by a fringe pattern”, in contrast to the
effective flux density, which is the “intensity collected by an antenna beam”.

The cross–power spectrum of the received voltages is given through the
complex visibility as:

Sv1v2(ω) =
1

4
A0 e

−iωτg0 V(ω). (168)

This is an analog of the single–dish relation:

Svv(ω) =
1

2
Wν =

1

4
Ae Sν , (169)

where Ae is the effective aperture of the antenna, and Wν is the received
power per unit frequency, as before.

The complex visibility is an important quantity of the interferometry for
infering the structure, or “image”, of the observed source, as we will discuss
later.

2.2 Frequency Conversion in Radio Interferometers

It has been technically impossible to cross–correlate received voltage signals
at RF frequencies higher than ∼ 1 GHz. Therefore, in modern radio inter-
ferometers, the received RF signals have been frequency–converted to lower
IF frequencies, before the correlation processing (Figure 28).
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So, let us now consider how cross–power spectra SvI1vI2
(ω) of IF sig-

nals are related to the cross–power spectra Sv1v2(ω) of RF signals, which we
have so far discussed (see, for example, equation (168)). It is interesting to
emamine, in particular, if the condition of stationary randomness of the RF

v1(t) v2(t)
hR2hR1 SvR1vR2(ω)

Sv1v2(ω)

RF Filter
(LNA + BPF)

RF signalvR1(t) vR2(t)
   Local
Oscillator

Mixer

hI1 hI2

vI2(t)vI1(t)

SvI1vI2(ω) IF Filter
(IF Amp + BPF)

IF signal

to correlator to correlator

Received
   signal

Figure 28: How the cross–power spectrum SvI1vI2
(ω) of IF signals are related

to the cross-power spectrum Sv1v2(ω) of received signals?

signals are conserved after the frequency conversion, where the RF signals are
“mixed” (multiplied and then band–pass filtered) with sinusoidal reference
signals provided from LOs (local oscillators).

2.2.1 Response of RF Filters

The RF signals are usually amplified and band–pass filtered, before the fre-
quency conversion, in cm– and long mm–wave observations. Therefore, we
first take into account, in a general form, responses of the RF filters, which
are usually composed of LNAs (low noise amplifiers) and BPFs (band–pass
filters). In cases, when first stage devices in receiving systems are mixers,
such as SIS mixers used in short mm–wave observations, this step must be
simply ommited.
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Let us consider that an RF filter is a linear system, whose input is the
received voltage v(t), output is a voltage denoted as vR(t), and filter response
is described by a real impulse response hR(t).

Then, we have
vR(t) = v(t) ∗ hR(t). (170)

This means, in view of the convolution theorem given in equation (66), that
Fourier transforms ṽ(ω) and ṽR(ω) of the stationary random processes v(t)
and vR(t), respectively, and system function HR(ω) of the impulse response
hR(t):

v(t) ⇔ ṽ(ω), vR(t) ⇔ ṽR(ω), hR(t) ⇔ HR(ω), (171)

satisfy
ṽR(ω) = ṽ(ω)HR(ω). (172)

The system function HR(ω) here stands for effects of the LNA gain and
band–pass characteristics of the BPF.

Thus, for Fourier transforms of input voltage signals v1(t) and v2(t), re-
ceived at two antennas, and output voltages vR1(t) and vR2(t) of RF filters,
with impulse responses hR1(t) and hR2(t), respectively,

v1(t) ⇔ ṽ1(ω), vR1(t) ⇔ ṽR1(ω), hR1(t) ⇔ HR1(ω),

v2(t) ⇔ ṽ2(ω), vR2(t) ⇔ ṽR2(ω), hR2(t) ⇔ HR2(ω), (173)

we have

ṽR1(ω) = ṽ1(ω)HR1(ω),

ṽR2(ω) = ṽ2(ω)HR2(ω). (174)

Hence, cross–correlation of ṽR1(ω) and ṽR2(ω) is givn by

〈ṽR1(ω) ṽ∗R2(ω
′)〉 = 〈ṽ1(ω) ṽ∗2(ω

′)〉HR1(ω)H∗
R2(ω

′). (175)

Now, in view of the general properties of cross–correlations of Fourier
transforms of stationary random processes, given in equation (83), we have

〈ṽR1(ω) ṽ∗R2(ω
′)〉 = 2π SvR1vR2

(ω) δ(ω − ω′),

〈ṽ1(ω) ṽ∗2(ω
′)〉 = 2π Sv1v2(ω) δ(ω − ω′), (176)

where Sv1v2(ω) and SvR1vR2
(ω) are cross–power spectra of input voltages v1(t)

and v2(t), and output voltages vR1(t) and vR2(t), respectively, of the RF
filters. Consequently, equation (175) yields a relation:

SvR1vR2
(ω) = Sv1v2(ω)HR1(ω)H∗

R2(ω), (177)

between the cross–power spectra of input and output signals of the RF filters
(see Figure 28). Note that the cross–power spectrum of the received voltages
Sv1v2(ω) is related to the complex visibility of an observed source in equation
(168).
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2.2.2 Fourier Transform of IF Voltage Signal

Let us now proceed to the problem of the frequency conversion.
Actual frequency conversion is often performed through several steps, by

sequentially shifting a spectral range, which contains observed data, from
higher frequencies to lower frequencies, in turn. However, we assume here
a simplified scheme, where single frequency conversion units down–convert
RF signals to final IF signals, at once. Basically, multi–step conversion is
equivalent to a single–step conversion, as long as the total frequency shifts
and total band–pass characteristics are the same in both schemes. Therefore,
our simplified assumption will not lower generality of following discussions.

Mixer
2 cos(ωLOt + φLO)

hI

vR (t)

vI (t)

vm (t)

LO

Figure 29: A simple image of a frequency converter.

Let us consider a simple frequency converter, as illustrated in Figure 29.
Generally speaking, amplitude of the LO reference signal can be arbitrarily
chosen. We adopted here 2 cos(ωLOt + φLO) as the reference signal, where
ωLO is LO frequency and φLO is initial phase, since the coefficient 2 results
in a simple form of the IF signal after the down–conversion.

Then, an RF voltage signal vR(t) is multiplied with the LO reference
signal by a mixer, and a resulting signal vm(t) has a form:

vm(t) = vR(t) 2 cos(ωLOt+φLO) = vR(t) [ei(ωLOt+φLO) + e−i(ωLOt+φLO)]. (178)
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Therefore, in view of the shift theorem given in equation (68), a Fourier
transform ṽm(ω) of vm(t) (i.e., vm(t) ⇔ ṽm(ω)) is given by

ṽm(ω) = ṽR (ω − ωLO) eiφLO + ṽR (ω + ωLO) e−iφLO , (179)

where ṽR(ω) is again a Fourier transform of the random process vR(t).
An IF filter is usually composed of a BPF and an IF amplifier. So, let us

denote an impulse response and a system function of such an IF filter as hI(t)
and HI(ω), respectively. By definition, they form a Fourier transformation
pair:

hI(t) ⇔ HI(ω). (180)

Then, an IF voltage signal vI(t), which is an output of the IF filter, is de-
scribed through the impulse response hI(t) as

vI(t) = vm(t) ∗ hI(t). (181)

Therefore, in view of the convolution theorem given in equation (66), we
obtain a Fourier transform ṽI(ω) of the IF voltage signal vI(t) (i.e., vI(t) ⇔
ṽI(ω)) in a form:

ṽI(ω) = ṽm(ω)HI(ω)

= [ṽR (ω − ωLO) eiφLO + ṽR (ω + ωLO) e−iφLO ]HI(ω). (182)

2.2.3 Cross–Correlation of Fourier Transforms of IF Signals

Let us now consider the frequency conversion in an interferometer, as schemat-
ically shown in Figure 30.

All notations in the previous subsection are used here again, except for
new sufficies 1 and 2, which distinguish signals and devices in antennas 1 and
2. We assume here that reference signals with a common frequency ωLO are
fed to two mixers, based on an image of a connected–element interferome-
ter, which is equipped with a common frequency standard. In general, this
assumption is not applicable to VLBI, as we will see later.

Now, the Fourier transforms of the IF voltage signals from antennas 1
and 2 are given by

ṽI1(ω) = [ṽR1 (ω − ωLO) eiφLO1 + ṽR1 (ω + ωLO) e−iφLO1]HI1(ω),

ṽI2(ω) = [ṽR2 (ω − ωLO) eiφLO2 + ṽR2 (ω + ωLO) e−iφLO2]HI2(ω). (183)

Therefore their cross–correlation is

〈ṽI1(ω) ṽ∗I2(ω
′)〉 = 〈[ṽR1 (ω − ωLO) eiφLO1 + ṽR1 (ω + ωLO) e−iφLO1]
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Mixer
2 cos(ωLOt + φLO1)
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hI2

vR2 (t)

vI2 (t)

vm2 (t)

Antenna 1 Antenna 2

Figure 30: Frequency conversion in an interferometer.

×[ṽ∗R2 (ω′ − ωLO) e−iφLO2 + ṽ∗R2 (ω′ + ωLO) eiφLO2]〉
×HI1(ω)H∗

I2(ω
′)

= [ 〈ṽR1(ω − ωLO) ṽ∗R2(ω
′ − ωLO)〉 ei(φLO1−φLO2)

+〈ṽR1(ω + ωLO) ṽ∗R2(ω
′ + ωLO)〉 e−i(φLO1−φLO2)

+〈ṽR1(ω − ωLO) ṽ∗R2(ω
′ + ωLO)〉 ei(φLO1+φLO2)

+〈ṽR1(ω + ωLO) ṽ∗R2(ω
′ − ωLO)〉 e−i(φLO1+φLO2)]

×HI1(ω)H∗
I2(ω

′). (184)

Since RF voltage signals vR1(t) and vR2(t) are assumed to be jointly station-
ary random processes, their Fourier transforms must satisfy

〈ṽR1(ω) ṽ∗R2(ω
′)〉 = 2π SvR1vR2

(ω) δ(ω − ω′), (185)

as shown in equation (83), where SvR1vR2
(ω) is the cross–power spectrum of

RF voltages, which is given in equation (177). Therefore, we obtain

〈ṽI1(ω) ṽ∗I2(ω
′)〉

= 2π[SvR1vR2
(ω − ωLO) ei(φLO1−φLO2)HI1(ω)H∗

I2(ω) δ(ω − ω′)

+SvR1vR2
(ω + ωLO) e−i(φLO1−φLO2)HI1(ω)H∗

I2(ω) δ(ω − ω′)

+SvR1vR2
(ω − ωLO) ei(φLO1+φLO2)HI1(ω)H∗

I2(ω − 2ωLO)

×δ(ω − ω′ − 2ωLO)

+SvR1vR2
(ω + ωLO) e−i(φLO1+φLO2)HI1(ω)H∗

I2(ω + 2ωLO)

×δ(ω − ω′ + 2ωLO)].
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(186)

First two terms in RHS of equation (186) are proportional to δ(ω − ω ′),
and therefore, satisfy the condition of jointly stationary processes, given in
equation (83). However, third and fourth terms in RHS of equation (186)
are proportional to δ(ω − ω′ − 2ωLO) and δ(ω − ω′ + 2ωLO), respectively,
and therefore, do not satisfy the condition of equation (83). Consequently,
generally speaking, IF voltage signals after the frequency conversion may not
be jointly stationary, i.e. their cross–correlations may depend on time and
LO frequency ωLO. This is not surprising, because the mixer output vm(t)
in equation (178) is a product of the RF signal with a LO reference signal, a
regular cosine oscillation, which is not random, nor stationary.

2.2.4 Roles of Low–Pass Filters

Nevertheless, if the cross–power spectrum of the RF signals is band–limited
within a certain frequency range, and the IF filters are designed to pass a
suitable low–frequency range only, we can make the third and fourth terms
to be zero, so that resulting IF signals become jointly stationary.

In fact, if the cross–power spectrum of the RF signals is band–limited
within a range:

0 < ω1 <| ω |< ω2, (187)

and IF filters HI1(ω) and HI2(ω) are both confined within, or proportional
to, a rectangular low–pass filter HLP (ω):

HLP (ω) =











1 for | ω |≤ ωc,

0 otherwise,
(188)

with a cut–off frequency ωc, which satisfies conditions:























ω2 − ωLO < ωc,

ωLO − ω1 < ωc,

ωc < ω1 + ωLO,

(189)

then, we can eliminate the third and fourth terms in RHS of equation (186),
as illustrated in Figure 31.

Figure 31 shows real and imaginary spectral shapes of original complex
cross–power spectrum SvR1vR2

(ω) (solid line) in RF–band, and two spectral
functions figuring in equation (186), namely, SvR1vR2

(ω + ωLO) (dotted line),
and SvR1vR2

(ω − ωLO) (broken line).
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SvR1vR2
(ω) is shown here as Hermitian symmetric, since corresponding

cross–correlation RvR1vR2
(τ) is real (equation (60)). SvR1vR2

(ω+ωLO) has the
same spectral shape as the original SvR1vR2

(ω), but shifted by ωLO towards
lower frequency side, while SvR1vR2

(ω−ωLO) also has the same spectral shape,
but shifted by ωLO towards higher frequency side.

ω2−ωLOωLO−ω1 ω1+ωLO

HLP(ω)HLP(ω+2ωLO) HLP(ω−2ωLO)

SvR1vR2(ω+ωLO)

SvR1vR2(ω−ωLO)

ω

1 2 3

1 2 3

Real

Imaginary

ωLO−ωLO ω1 ω2−ω2 −ω1 0 2ωLO−2ωLO −ωc ωc

ωLO−ωLO ω1 ω2−ω2 −ω1 0 2ωLO−2ωLO −ωc ωc ω

SvR1vR2(ω)

Figure 31: Original complex cross–power spectrum SvR1vR2
(ω) (solid

line), and shifted–in–frequency spectra SvR1vR2
(ω + ωLO) (dotted line) and

SvR1vR2
(ω−ωLO) (broken line). Boxes assigned with numbers show frequency

ranges corresponding to passbands of filters HLP (ω + 2ωLO), HLP (ω), and
HLP (ω − 2ωLO), respectively. Only those parts of spectra which are con-
fined within the central box can be passed through the product of IF filters
HI1(ω)H∗

I2(ω) in equation (186).

Both spectral functions SvR1vR2
(ω + ωLO) and SvR1vR2

(ω − ωLO) consist
of lower–frequency and higher–frequency parts, corresponding to negative–
frequency and positive–frequency parts of the original band–limited RF cross–
power spectrum SvR1vR2

(ω). They are confined in three frequency ranges
shown by boxes 1©, 2©, and 3© in Figure 31. These frequency ranges cor-
respond to passbands of rectangular filters HLP (ω + 2ωLO), HLP (ω), and
HLP (ω−2ωLO), respectively, which are defined by equations (188) and (189).

Let us now examine contributions from 4 terms in RHS of equation (186),
one by one.

1. In the first term, the lower–frequency part of SvR1vR2
(ω − ωLO), which
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is inside the box 2©, can be passed through the product of IF filters
HI1(ω)H∗

I2(ω), but the higher frequency part, which is inside the box
3©, is cut off by the same filter product.

2. In the second term, the higher–frequency part of SvR1vR2
(ω + ωLO),

which is inside the box 2©, can be passed through the product of IF
filters HI1(ω)H∗

I2(ω), but the lower frequency part, which is inside the
box 1©, is cut off by the same filter product.

3. In the third term, the entire spectrum SvR1vR2
(ω−ωLO) is cut off by the

product of IF filters HI1(ω)H∗
I2(ω − 2ωLO), since the lower–frequency

part, which is inside the box 2©, is cut off by the filter H∗
I2(ω− 2ωLO),

while the higher–frequency part, which is in 3©, is cut off by the filter
HI1(ω).

4. In the fourth term, again, the entire spectrum SvR1vR2
(ω + ωLO) is cut

off by the product of IF filters HI1(ω)H∗
I2(ω + 2ωLO), since the lower–

frequency part, which is inside the box 1©, is cut off by the filter HI1(ω),
while the higher–frequency part, which is in 2©, is cut off by the filter
H∗
I2(ω + 2ωLO).

Thus, in the RHS of equation (186), the third and fourth terms are reduced
to zero, and only first 2 terms, with the higher–frequency part of SvR1vR2

(ω+
ωLO) and lower–frequency part of SvR1vR2

(ω − ωLO), are left.
Therefore, equation (186) now results in:

〈ṽI1(ω) ṽ∗I2(ω
′)〉

= 2π[SvR1vR2
(ω + ωLO) e−i(φLO1−φLO2)

+SvR1vR2
(ω − ωLO) ei(φLO1−φLO2)]

×HI1(ω)H∗
I2(ω) δ(ω − ω′). (190)

This equation has a proper form of a cross–correlation of Fourier trans-
forms of jointly stationary random processes, which is proportional to δ(ω−
ω′), as given in equation (83). Consequently, the IF voltage signals vI1(t)
and vI2(t) can now be regarded as jointly stationary random processes.

2.2.5 Relationship between RF Spectrum and IF Spectrum

The result of the previous section means that we can now define a cross–power
spectrum SvI1vI2

(ω) of the IF voltage signals vI1(t) and vI2(t), according to
equation (55), as we usually do for jointly stationary random processes. In
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view of equation (83), the cross–power spectrum must be related to the cross–
correlation of the Fourier transforms 〈ṽI1(ω) ṽ∗I2(ω

′)〉 by the general formula:

〈ṽI1(ω) ṽ∗I2(ω
′)〉 = 2π SvI1vI2

(ω) δ(ω − ω′). (191)

Equating RHSs of equations (190) and (191), we obtain

SvI1vI2
(ω) = [SvR1vR2

(ω + ωLO) e−i(φLO1−φLO2)

+SvR1vR2
(ω − ωLO) ei(φLO1−φLO2)]

×HI1(ω)H∗
I2(ω), (192)

which is a relationship between a cross–power spectrum of IF voltage signals
SvI1vI2

(ω), after the frequency conversion, and a cross–power spectrum of RF
voltage signals SvR1vR2

(ω), before the frequency conversion.

ω

Real

Imaginary

ωLO−ωLO 0

ωLO−ωLO 0 ω

IF band RF band

USB

LSB

USB

LSB

HI1(ω)HI2(ω)*

HI1(ω)HI2(ω)*

upper 
sideband

lower 
sideband

Figure 32: Upper sideband (USB) and lower sideband (LSB) contributions in
a cross–power spectrum of IF voltage signals, which is confined in a passband
of the product of IF filters HI1(ω)H∗

I2(ω).

The IF cross–power spectrum is shown in Figure 32, where we assumed
same initial phases of local oscillators, i.e., φLO1 − φLO2 = 0 for simplicity.
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The IF spectrum is Hermitian symmetric, according to the general property
of a cross–power spectrum, which corresponds to a real cross–correlation,
as shown in equation (60). In our case, the cross–correlation of IF voltage
signals is surely real, simply because IF voltage signals themselves are real.

Since the cross–correlation can be described by the positive–frequency re-
gion of the Hermitian symmetric cross–power spectrum, as we saw in equation
(62), we will pay our attension to the positive frequency region (ω ≥ 0) of the
IF spectrum. Then, the original RF cross–power spectrum, shown by solid
lines in Figure 32, is down–converted to IF–band, and the upper sideband
(USB) of SvR1vR2

(ω+ωLO) (shown by a broken line), and the lower sideband
(LSB) of SvR1vR2

(ω − ωLO) (shown by a dotted line) are passed through the
product of the IF filters HI1(ω)H∗

I2(ω) in the positive IF frequency region,
as we see in Figure 32.

Thus, we can notice here following properties of the IF spectrum:

• Spectral shape of the RF spectrum is preserved, and just shifted into
the IF–band.

• Upper sideband (USB) and lower sideband (LSB) components are su-
perposed in the IF passband of HI1(ω)H∗

I2(ω).

• In the positive frequency range of the IF spectrum, ω ≥ 0, spectrum of
the LSB component is reversed, compared with the positive frequency
part of the original RF spectrum.

Because of the Hermitian symmetry Sxy(−ω) = S∗
xy(ω) for real processes,

as shown in equation (60), we can rewrite equation (192) in a form:

SvI1vI2
(ω) = [SvR1vR2

(ωLO + ω) e−i(φLO1−φLO2)

+S∗
vR1vR2

(ωLO − ω) ei(φLO1−φLO2)]

×HI1(ω)H∗
I2(ω), (193)

using only positive–frequency part of the RF cross–power spectrum. The
first term in the RHS of equation (193) shows USB component in the pos-
itive frequency side (ω ≥ 0) and LSB component in the negative frequency
side (ω < 0), while the second term shows LSB component in the positive
frequency side (ω ≥ 0) and USB component in the negative frequency side
(ω < 0).
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2.3 Delay Tracking and Fringe Stopping

In subsection 1.3, we saw, based on a simple interferometer model, that a
radio interferometer can detect a radio source, only when the source is within
the “coherence interval” of the white fringe, i.e., within a certain range,
around zero, of the delay between arrival times of a common wave front,
from an astronomical radio source, at antennas. The delay range is roughly
equal to 2/B, where B is a frequency bandwidth of the received signal. Table
1 of subsection 1.3.6 showed that the delay range corresponds to an angular
interval in the sky, which is usually very narrow for modern interferometers,
especially for VLBIs. If we do not have any effective means to compensate the
delay, this would imply that we can observe a source, only when the source
happens to be within the very narrow region of the sky, where the geometric
delay is nearly zero, that is, of course, highly ineffective and unrealistic.

Also, we saw that the diurnal motion of a radio source causes rapid oscil-
lation of the correlator output due to the densely spaced fringe patterns, as
schematically illustrated in Figure 21 and Table 2 of subsection 1.3.7. Such
an oscillation would make it practically impossible to integrate the multi-
plier output for a duration of time, sufficient to get a signal to noise ratio,
necessary for detecting the source.

Therefore, the modern interferometers must be equipped with special
mechanisms, for compensating the delay and stopping the rapid oscillation
of the correlator output. They are called “delay tracking” and “fringe stop-
ping”, respectively. Now we would like to discuss how these functions are
realized in a relaistic interferometer.

2.3.1 General Form of Cross–Power Spectrum of IF Signals

In order to clarify meanings of the delay tracking and fringe stopping in
more detail, we will first combine results of previous discussions, and derive
a general description of the cross–power spectrum of IF voltage signals.

So far, we derived

1. the cross–power spectrum of received voltages:

Sv1v2(ω) =
1

4
A0 e

−iωτg0 V(ω),

given in equation (168), where A0 is the geometrical mean of effective
apertures of antennas, and V(ω) is the complex visibility:

V(ω) =
∮

AN (σ) Iν(σ) e−i2πDλ·σ dΩ,
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given in equation (165), where AN(σ) is the normalized power pattern
of an interferometer, σ = s − s0 is an offset vector showing a certain
direction s in a source with respect to the reference direction s0, Iν(σ)
is the source intensity distribution, and Dλ = D/λ is a baseline vector
normalized by a wave length λ,

2. the cross–power spectrum of RF voltage signals after the RF filters
(amplifiers and BPFs) with system functions HR1(ω) and HR2(ω):

SvR1vR2
(ω) = Sv1v2(ω)HR1(ω)H∗

R2(ω),

given in equation (177),

3. the cross–power spectrum of IF voltage signals after the frequency con-
version:

SvI1vI2
(ω) = [SvR1vR2

(ωLO + ω) e−i(φLO1−φLO2)

+S∗
vR1vR2

(ωLO − ω) ei(φLO1−φLO2)]

×HI1(ω)H∗
I2(ω),

given in equation (193), where ωLO is the LO reference frequency, φLO1

and φLO2 are initial phases of two local oscillators, and HI1(ω) and
HI2(ω) are system functions of the IF filters.

Combining last two equations, i.e., equations (177) and (193), we have

SvI1vI2
(ω)

= [HR1(ωLO + ω)H∗
R2(ωLO + ω)Sv1v2(ωLO + ω) e−i(φLO1−φLO2)

+H∗
R1(ωLO − ω)HR2(ωLO − ω)S∗

v1v2
(ωLO − ω) ei(φLO1−φLO2)]

×HI1(ω)H∗
I2(ω). (194)

Here, system functions of real impulse responses of IF filters must satisfy
equation (74):

HI1(ω) = H∗
I1(−ω), and H∗

I2(ω) = HI2(−ω).

Therefore, introducing new system functions H1(ω) and H2(ω) for responses
of combined IF filters, composed of down–converted RF and original IF fil-
ters, in antenna 1 and antenna 2, respectively:

H1(ω) = HR1(ωLO + ω)HI1(ω),

H2(ω) = HR2(ωLO + ω)HI2(ω), (195)
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we can rewrite equation (194) as:

SvI1vI2
(ω)

= H1(ω)H∗
2(ω)Sv1v2(ωLO + ω) e−i(φLO1−φLO2)

+H∗
1 (−ω)H2(−ω)S∗

v1v2
(ωLO − ω) ei(φLO1−φLO2). (196)

Hereafter, we call the complex function H1(ω)H∗
2(ω) “bandpass characteris-

tics of combined IF filters”.
Then, inserting equation (168) into equation (196), we obtain a general

form of the cross–power spectrum of the IF voltage signals, which describes
SvI1vI2

(ω) in terms of source intensity distribution, geometry of observation,
filter responses, and parameters of the frequency conversion:

SvI1vI2
(ω)

=
1

4
A0 {e−i[(ωLO+ω)τg0+φLO1−φLO2] V(ωLO + ω)H1(ω)H∗

2(ω)

+ei[(ωLO−ω)τg0+φLO1−φLO2] V∗(ωLO − ω)H∗
1(−ω)H2(−ω)}.

(197)

Of course, this equation satisfies the Hermitian symmetry condition:

SvI1vI2
(ω) = S∗

vI1vI2
(−ω),

required for real processes vI1(t) and vI2(t).
Representing the complex visibility in terms of visibility amplitude and

visibility phase, as introduced in equation (166), we have

V(ωLO + ω) = | V(ωLO + ω) | eiΦv(ωLO+ω),

V∗(ωLO − ω) = | V(ωLO − ω) | e−iΦv(ωLO−ω). (198)

Also we represent the bandpass characteristics of combined IF filters in terms
of its amplitude | H1(ω)H∗

2(ω) | and phase Φb(ω):

H1(ω)H∗
2(ω) = | H1(ω)H∗

2(ω) | eiΦb(ω),

H∗
1 (−ω)H2(−ω) = | H1(−ω)H∗

2(−ω) | e−iΦb(−ω). (199)

Then, the cross–power spectrum of IF signals is now reduced to

SvI1vI2
(ω)

=
1

4
A0 | V(ωLO + ω) | | H1(ω)H∗

2(ω) | e−i[(ωLO+ω)τg0+φLO1−φLO2−Φv(ωLO+ω)−Φb(ω)]

+
1

4
A0 | V(ωLO − ω) | | H1(−ω)H∗

2(−ω) | ei[(ωLO−ω)τg0+φLO1−φLO2−Φv(ωLO−ω)−Φb(−ω)].

(200)
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Again, first term in the RHS of equation (200) shows USB component in
the positive frequency range (ω ≥ 0) and LSB component in the negative
frequency range (ω < 0), while second term shows LSB component in the
positive frequency range (ω ≥ 0) and USB component in the negative fre-
quency range (ω < 0).

amplitude

phase
ω

ω

ωLO

ωLO−ωLO

−ωLO 0

0

USB  LSB LSB  USB

Figure 33: Amplitudes and phases of two terms in a cross–power spectrum
of IF voltage signals. Solid lines show original RF spectrum, and dotted and
broken lines correspond to first and second terms of the RHS of equation
(200), respectively. For simplicity, only contribution of geometric delay is
shown in phase spectrum.

If we denote amplitudes and phases of the first and second terms of the
RHS of equation (200) as Ap(ω), Φp(ω, t) and An(ω), Φn(ω, t), respectively,
we have

SvI1vI2
(ω) = Ap(ω) e−iΦp(ω, t) + An(ω) e−iΦn(ω, t), (201)

with

Ap(ω) =
1

4
A0 | V(ωLO + ω) | | H1(ω)H∗

2(ω) |,

An(ω) =
1

4
A0 | V(ωLO − ω) | | H1(−ω)H∗

2(−ω) |, (202)

94



and

Φp(ω, t) = (ωLO + ω)τg0 + φLO1 − φLO2 − Φv(ωLO + ω) − Φb(ω),

Φn(ω, t) = −(ωLO − ω)τg0 − φLO1 + φLO2 + Φv(ωLO − ω) + Φb(−ω).

(203)

Here, we took into account that phases are functions of both frequency and
time, in view of the time–variable geometric delay τg0 . This shows amplitude
and phase spectra of the cross–power spectrum of IF signals, which can be
contrasted to those given in equations (101), (102), and (103), for a simple
interferometer model. Again, first term in the RHS of equation (200) shows
USB component in the positive frequency range (ω ≥ 0) and LSB component
in the negative frequency range (ω < 0), while second term shows LSB
component in the positive frequency range (ω ≥ 0) and USB component in
the negative frequency range (ω < 0).

Figure 33 shows the amplitude and phase spectra of two terms of the
IF cross–power spectrum in the RHS of equation (200), which can be com-
pared with Figure 19 for a simple interferometer. For simplicity, we showed
only contribution of geometric delay τg0 in this figure, ignoring small effects
of φLO1, φLO2, Φv, and Φb terms. The IF band here is assumed to be a
“video–band” (or “baseband”), which includes zero frequency, or “DC (di-
rect current)”, component with ω = 0.

2.3.2 “Expected Correlation” of IF Signals

If we had an idealized correlator, which would be capable of multiplying
two IF voltage signals, and immediately calculating a statistical mean of the
product, such a correlator would yield the cross–correlation of the IF voltage
signals RvI1vI2

(τ) at time difference τ = 0:

〈vI1(t) vI2(t)〉 = RvI1vI2
(0).

According to equation (197), we expect that this “instantaneous correla-
tor output” is described by an inverse Fourier transformation of the cross–
power spectrum SvI1vI2

(ω), with τ = 0:

RvI1vI2
(0) =

1

2π

∞
∫

−∞

SvI1vI2
(ω) dω =

1

π
<

∞
∫

0

SvI1vI2
(ω) dω

=
A0

4π
<


e−i(ωLOτg0+φLO1−φLO2)

∞
∫

0

V(ωLO + ω) e−iωτg0 H1(ω)H∗
2(ω) dω

+ ei(ωLOτg0+φLO1−φLO2)

∞
∫

0

V∗(ωLO − ω) e−iωτg0 H∗
1 (−ω)H2(−ω) dω



 , (204)
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where we used the property of a Hermitian symmetric cross–power spectrum
given in equation (74), in order to restrict range of integration to the positive
frequency side only.

ω I−ω I 0

∆ω∆ω

ω

G

H1(ω)H2(ω)*

Figure 34: Rectangular response of a real filter.

If we assume, similarly to what we did in the case of a simple interfer-
ometer model in Section 1.3, a real, even, and rectangular system functions
of the combined IF filters, with a gain factor G, bandwidth ∆ω = 2πB and
center frequency ωI , as shown in Figure 34, i.e.,

H1(ω)H∗
2(ω) = H∗

1 (−ω)H2(−ω) =











G if ωI − ∆ω
2

≤| ω |≤ ωI + ∆ω
2
,

0 otherwise,

(205)

and also assume a continuum spectrum source, with almost constant complex
visibility across the frequency bandwidth,

V(ω) ∼= V for ωI −
∆ω

2
≤| ω |≤ ωI +

∆ω

2
, (206)

then, we obtain from equation (204)

RvI1vI2
(0) =

A0G

4π
<









e−i(ωLOτg0+φLO1−φLO2) V
ωI+∆ω

2
∫

ωI−
∆ω
2

e−iωτg0 dω

+ ei(ωLOτg0+φLO1−φLO2) V∗

ωI+∆ω
2

∫

ωI−
∆ω
2

e−iωτg0 dω









. (207)

Since the integral in equation (207) is described in terms of the sinc function,
as we saw in equation (100):

1

π

ωI+∆ω
2

∫

ωI−
∆ω
2

e−iωτg0 dω = 2Be−iωIτg0
sin(πBτg0)

πBτg0
,
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and the complex visibility is represented in terms of its amplitude and phase:

V =| V | eiΦv ,

equation (207) is further reduced to

RvI1vI2
(0) =

A0GB | V |
2

sin(πBτg0)

πBτg0
× [cos(ωLOτg0 + ωIτg0 + φLO1 − φLO2 − Φv)

+ cos(ωLOτg0 − ωIτg0 + φLO1 − φLO2 − Φv)].

(208)

This equation is an analog of eauation (100), which we derived for a simple
interferometer model observing a continuum spectrum source. The sinc func-
tion stands for a bandwidth pattern, and two cosine terms are fringe patterns
corresponding to center frequencies of USB and LSB, respectively. Evidently,
first cosine term shows contribution of USB component, while second cosine
term shows contribution of LSB component.

Equation (208) again shows that we can detect fringe pattern of a contin-
uum spectrum source within a narrow coherence interval, roughly represented
by ∆τB = 2/B. Also, time variation of the geometric delay τg0 in the fringe
patterns causes rapid sinusoidal oscillation of RvI1vI2

(0), which makes it al-
most impossible to integrate (time–average) the product of voltage signals
for a meaningful duration of time. Therefore, we definitely need the delay
tracking and fringe stopping for a realistic interferometer.

There is no widely–accepted name for the “instantaneous correlator out-
put” RvX1vX2

(0), where vX1(t) and vX2(t) could be any voltages in radio
interferometry, i.e., they could be received voltages, RF voltages, or IF volt-
ages. This is not an actual correlator output, since any correlator output
is obtained only after integration of a product of voltages, or a multiplier
output, for some duration of time in an integrator. This is not the product
of individual voltages, either. This is a statistical expectation of the product
of voltages, or the multiplier output, at a certain instance of time.

An important point here is the following. We consider that an actual
product of voltages consists of a signal component and a noise component,
and the signal component is described by this quantity: RvX1vX2

(0). We
apply the fringe stopping, in order to stop the rapid oscillation of this signal
quantity, so that we can suppress the noise and detect the signal by time
averaging.

Hereafter, we call this quantity as an “expected correlation” in a radio
interferometer.
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2.3.3 Radio Source Tracking by an Interferometer

What is needed is to compensate the geometric delay τg0 to get the same
effect, which would be obtained, if we move one of the antennas along the
surface of a sphere of diameter equal to the baseline length, such that τg0 is
always maintained equal to zero, as illustrated in Figure 35. Such compensa-

multiplier

integrator

D
cτg  = D sinθ

θ

correlator

h2

instrumental
delay

τi

h1

1 2

vR2(t)vR1(t)

vR2(t)’

0

Figure 35: How to track a radio source by an interferometer? Insertion of an
instrumental delay, which compensates the geometric delay, in the RF–band
can do the job.

tion of the geometric delay enables an interferometer to “track” the motion
of a radio source, in order to keep the source in its “interferometer beam”,
just as a single–dish radio telescope does with its antenna beam.

A time–variable delay circuit, which is inserted into the transmission sys-
tem of one of the antennas at RF–band, and provides an instrumental delay
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τi equal to the geometric delay τg0 , as illustrated in Figure 35, can realize, at
least theoretically, the required tracking.

Although this statement must be intuitively obvious, it would be still
useful to logically trace the effect of delay insertion, in the following way.

Insertion of an instrumental delay τi, in the RF signal transmission system
of antenna 2, would make the RF voltage signal v ′R2(t), after the delay circuit,
and its Fourier transform ṽ′R2(ω), to be equal to

v′R2(t) = vR2(t− τi), and therefore, ṽ′R2(ω) = ṽR2(ω) e−iωτi, (209)

where vR2(t), and ṽR2(ω), correspond to the RF voltage signal before the
instrumental delay. We used the shift theorem given in equation (68), in
deriving equation (209).

Therefore, taking a cross–correlation of Fourier transforms ṽR1(ω) and
ṽ′R2(ω) of RF voltage signals, we see

〈ṽR1(ω) ṽ′∗R2(ω
′)〉 = 〈ṽR1(ω) ṽ∗R2(ω

′)〉 eiω′τi . (210)

Since we assumed that the RF signals vR1(t) and vR2(t) are jointly station-
ary random processes, vR1(t) and v′R2(t) must also be jointly stationary ran-
dom processes. Hence, the cross–correlations of their Fourier transforms and
cross–power spectra must be related to each other as:

〈ṽR1(ω) ṽ′∗R2(ω
′)〉 = 2πSvR1v

′

R2
(ω) δ(ω − ω′),

〈ṽR1(ω) ṽ∗R2(ω
′)〉 = 2πSvR1vR2

(ω) δ(ω − ω′), (211)

in view of equation (83). Comparing equations (210) and (211), we obtain
a relation between the cross–power spectrum SvR1v

′

R2
(ω) of the RF voltage

signal vR1(t) of antenna 1 and the delay–inserted RF voltage signal v ′R2(t)
of antenna 2, and the cross–power spectrum SvR1vR2

(ω) of the RF voltages
without delay insertion:

SvR1v
′

R2
(ω) = SvR1vR2

(ω) eiωτi, (212)

which leads to

SvR1v
′

R2
(ω) = Sv1v2(ω)HR1(ω)H∗

R2(ω) eiωτi

=
1

4
A0 e

−iω∆τg V(ω)HR1(ω)H∗
R2(ω), (213)

where
∆τg = τg0 − τi.
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We used here equations (168) and (177) for expressions of the cross–power
spectra of RF voltages SvR1vR2

(ω), and received voltages Sv1v2(ω).
As we see, an only different point between combined equations (168) and

(177) and this equation (213) is that the geometric delay τg0 is replaced by
the delay difference ∆τg = τg0 − τi. Therefore, we can easily derive an ex-
pected correlation of an IF voltage vI1(t) of antenna 1 and an IF voltage with
delay inserted at RF–band v′′I2 of antenna 2, RvI1v′′I2

(0), from equation (208),
assuming again a rectangular filter, given in equation (205), and constant
visibility over receiving bandwidth, given in equation (206). The result is

RvI1v
′′

I2
(0) =

A0GB | V |
2

sin(πB∆τg)

πB∆τg
× [cos(ωLO∆τg + ωI∆τg + φLO1 − φLO2 − Φv)

+ cos(ωLO∆τg − ωI∆τg + φLO1 − φLO2 − Φv)].

(214)

Thus, as long as τi = τg0 , no delay effect is left in the RF cross–power
spectrum, given in equation (213), and, therefore, also in the expected corre-
lation of IF voltages in equation (214). This means that the insertion of an
instrumental delay, exactly equal to the geometric delay, at RF–band could
effectively reduce τg in equation (100), or τg0 in equation (208), to zero. This
would allow us to find fringes always at the center of the coherence interval,
and to integrate the product of voltage signals, as long as we wish. Or, oth-
erwise speaking, we could realize both delay tracking and fringe stopping by
a single operation, namely by the insertion of a time variable instrumental
delay, if we were allowed to do this at RF–band.

Unfortunately, it is almost impossible, in the current level of technology,
to realize any delay insertion at RF frequencies, higher than several GHz.
Therefore, the delay insertion is usually performed at IF–band.

2.3.4 Requirements to the Delay Tracking and Fringe Stopping

Before proceeding with discussions on actual realization of the delay track-
ing and fringe stopping, let us here estimate the ranges of variations, and
acuracies required to theoretical predictions, of the geometric delay τg0 and
its time rate τ̇g0 . For simplicity, we will implicitly rely upon an image of the
delay insertion at RF–band discussed above, since this does not cause any
loss of generality in present discussions.

If we denote the baseline vector and the unit vector directed to the radio
source as D and s0, respectively, the geometric delay τg0 and its time rate
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τ̇g0 , due to the diurnal rotation of the Earth, are given by:

τg0 =
D · s0

c
, (215)

τ̇g0 =
Ḋ · s0

c
=

(ω × D) · s0

c
, (216)

where ω is the angular velocity vector of the rotation of the Earth (|ω| '
7.3 × 10−5 rad/sec) and c ' 3 × 108 m/sec is the light velocity. Of course,
equation (216) is valid for ground–based interferometers only, and not valid
for space–VLBI baselines.

For a connected–element radio interferometer (CERI) of 300 m baseline,
say, the maximum geometric delay:

τgmax
=
D

c
= 1 µsec,

is obtained when the source direction is parallel to the baseline, and the
maximum delay rate:

τ̇gmax
=
ωD

c
= 70 psec/sec,

is obtained when ω ⊥ D and (ω × D) ‖ s0.

ω

D

R

2R

Figure 36: The maximum geometric delay (top) and maximum delay rate
(bottom) of the ground–based VLBI.

For the ground–based VLBI, the maximum geometric delay and the max-
imum delay rate are obtained in cases shown in Figure 36. If we denote the
Earth’s radius as R⊕ = 6300 km, the maximum values are

τgmax
=

R⊕

c
= 21 msec, (217)

τ̇gmax
=

2R⊕ω

c
= 3.1 µsec/sec. (218)
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If we observe at 22 GHz, equations (208) and (218) implies that the expected
correlation, defined in subsection 2.1.8, may oscillate with frequency as high
as 22 GHz × 3.1 × 10−6 = 68.2 kHz, or 68,200 cycles per second(!), due
to the diurnal motion of the source across the fringe pattern. Indeed, no
meaningful integration of the multiplier output is possible, unless we stop
such an oscillation.

The ranges of variations of geometric delay and its rate, as examined
above, and resulting variations of the phase in the cross-power spectrum of
voltage signals, such as shown in equation (200), are orders of magnitude
larger, than those caused by other delay effects (clock offset, atmospheric
propagation delay, cable delay, etc.), and by other phase terms (LO initial
phase, visibility phase, phase of bandpass characteristics, etc.). Therefore,
the delay tracking and fringe stopping are, primarily, means for compensation
of geometric delay. Although some other, much smaller, effects are also taken
into account in highly precise delay tracking and fringe stopping, performed
in VLBI correlators, we will postpone discussion of this problem, until we
consider correlation processings in VLBI.

We use an appropriate theoretical prediction of the time–variable geo-
metric delay, in order to determine length and rate of the instrumental delay,
to be applied to actual delay tracking and fringe stopping. Hence, the the-
oretical prediction itself, for the geometric delay τg0, has been traditionally
denoted as τi, and called “instrumental delay”.

Let us estimate accuracies required to such an instrumental delay τi and
its rate τ̇i.

In order to get a white fringe near the peak of the bandwidth pattern,
a difference ∆τg between the actual geometric delay τg0 and the predicted
instrumental delay τi, which we call hereafter “residual delay”:

∆τg = τg0 − τi, (219)

must be kept well smaller than the coherence interval ∆τB = 2/B, where B
is an observing bandwidth:

∆τg � ∆τB =
2

B
. (220)

Therefore, the acuuracy of the instrumental delay must be much better than
1 µsec when B = 2 MHz, and much better than 1 nsec when B = 2 GHz, as
Table 1 shows. We now compare these required accuracies with maximum
delay values τgmax

, estimated above for 300 m baseline connected–element
radio interferometer (CERI), and for VLBI. Table 3 shows relative accuracy,
in terms of ∆τg/τgmax

, required to the instrumental delay. The Table shows
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300 m CERI VLBI

τgmax
= 1µsec τgmax

= 21 msec

B = 2 MHz (∆τg � 1 µsec) � 1 � 5 × 10−5

B = 2 GHz (∆τg � 1 nsec) � 10−3 � 5 × 10−8

Table 3: Relative accuracy of ∆τg/τgmax
required to the instrumental delay.

that the required accuracy is rather high, for VLBI.
On the other hand, in order to carry out integration of the multiplier

output in a correlator, for a duration of time sufficient to get high enough
S/N ratio, we must apply an accurate theoretical model τi(t) to compensate
for time variation of the geometric delay τg0. If integration time is τa and
observing frequency is ν, a requirement to ∆τ̇g = (τ̇g0 − τ̇i) for successful
integration, is traditionally given by

2πν∆τ̇gτa ≤ 1. (221)

This requirement corresponds to a condition that an accumulated change of
the phase of the cross–power spectrum of voltage signals, such as shown in
equation (213), or of the phase in cosine terms of the expected correlation
in equation (214), does not exceed 1 radian during the integration time τa.
Table 4 shows required accuracy of the residual delay rate ∆τ̇g, according to

300 m CERI VLBI

τa = 1000 s, τ̇gmax
= 70 ps/s τa = 1 s , τ̇gmax

= 3.1µs/s

ν = 10 GHz ≤ 1.6 ×10−2 ps/s (≤ 2.3 ×10−4) ≤ 16 ps/s (≤ 5.2 ×10−6)

ν = 100 GHz ≤ 1.6 ×10−3 ps/s (≤ 2.3 ×10−5) ≤ 1.6 ps/s (≤ 5.2 ×10−7)

Table 4: Required accuracy of ∆τ̇g and relative accuracy of ∆τ̇g/τ̇gmax
(in

parenthes) for a 300 m baseline CERI with integration time τa = 1000 s
and maximum delay rate τ̇gmax

= 70 ps/s, and a VLBI with integration time
τa = 1 s and maximum delay rate τ̇gmax

= 3.1 µs/s .

equation (221), and its ratio to the maximum delay rate, estimated above,
for a 300 m baseline CERI with a typical integration time τa = 1000 s, and a
VLBI with a typical hardware integration time with a VLBI correlator τa = 1
s, at two cases of observing frequency, ν = 10 GHz and ν = 100 GHz.
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The requred accuracies are fairly high, especially in VLBI. Therefore,
theoretical prediction of the instrumental delay is usually based on state–
of–the–art geophysical and astronomical models of station coordinates, radio
source coordinates, and irregularities in the rotational motion of the Earth.

2.3.5 Insertion of Instrumental Delay at IF Band

Let us consider a case, when a time–variable instrumental delay τi is inserted
in the IF–band signal transmission system of antenna 2, as illustrated in
Figure 37.

D
cτg = D sinθ

θ

multiplier

integrator

τi

correlator

LO

instrumental
delay

Figure 37: Time–variable instrumental delay inserted at IF–band.

After the insertion of the delay circuit, IF voltage signal v ′I2(t), and its
Fourier transform ṽ′I2(ω), are changed to

v′I2(t) = vI2(t− τi), and, therefore, ṽ′I2(ω) = ṽI2(ω) e−iωτi, (222)
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where vI2(t), and ṽI2(ω), correspond to the IF voltage signal before the in-
strumental delay. We again used the shift theorem given in equation (68),
for deriving equation (222).

Following discussions in Subsection 2.3.3, we take a cross–correlation of
Fourier transforms ṽI1(ω) and ṽ′I2(ω) of IF voltage signals, to obtain

〈ṽI1(ω) ṽ′∗I2(ω
′)〉 = 〈ṽI1(ω) ṽ∗I2(ω

′)〉 eiω′τi . (223)

Since the IF signals vI1(t) and v′I2(t), as well as vI1(t) and vI2(t), are assumed
to be jointly stationary random processes, the cross–correlations of their
Fourier transforms and cross–power spectra are related to each other, by
equation (83), as:

〈ṽI1(ω) ṽ′∗I2(ω
′)〉 = 2πSvI1v

′

I2
(ω) δ(ω − ω′),

〈ṽI1(ω) ṽ∗I2(ω
′)〉 = 2πSvI1vI2

(ω) δ(ω − ω′). (224)

Comparing equations (223) and (224), we see that the cross–power spec-
trum SvI1v′I2

(ω) of the IF voltage signal vI1(t) of antenna 1 and the delay–
inserted IF voltage signal v′I2(t) of antenna 2, and the cross–power spectrum
SvI1vI2

(ω) of the IF voltages without delay insertion, are related to each other
as:

SvI1v
′

I2
(ω) = SvI1vI2

(ω) eiωτi. (225)

Inserting equation (197) to this equation, we have

SvI1v
′

I2
(ω)

=
1

4
A0 {e−i[ωLO τg0+ω∆τg+φLO1−φLO2] V(ωLO + ω)H1(ω)H∗

2(ω)

+ei[ωLO τg0−ω∆τg+φLO1−φLO2] V∗(ωLO − ω)H∗
1(−ω)H2(−ω)},

(226)

where, again, ∆τg = τg0 − τi is the residual delay. Contrary to equation
(213), which describes the effect of the delay insertion at RF–band, we cannot
here completely compensate for the geometric delay τg0, even if we insert an
instrumental delay which is exactly equal to the geometric delay τi = τg0 . In
fact, a term ωLOτg0 is still left uncompensated in the exponential functions
of equation (226).

In order to see this point more clearly, let us derive the expected corre-
lation RvI1v

′

I2
(0), as we did in equation (207), assuming again a rectangular

filter, given in equation (205), and constant visibility over receiving band-
width, given in equation (206). Since everything is the same as given in
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equation (207), except for a coefficient of ω term in the exponential func-
tions, namely ω∆τg instead of ωτg0, we obtain the result of integration:

RvI1v
′

I2
(0) =

A0GB | V |
2

sin(πB∆τg)

πB∆τg
× [cos(ωLOτg0 + ωI∆τg + φLO1 − φLO2 − Φv)

+ cos(ωLOτg0 − ωI∆τg + φLO1 − φLO2 − Φv)],

(227)

where ωI is the IF band center frequency, which is similar to equation (208),
except in the argument of sinc function and in the coefficient of ωI term in
cosine functions.

It is evident, from this equation, that insertion of an instrumental delay
τi, which is equal to the geometric delay τg0 , at IF–band, enables us to
detect a white fringe at the center of the coherence interval. However, ωLOτg0
terms in arguments of cosine functions are left uncompensated, which will
cause enormously rapid oscillations of the expected correlation. Therefore,
insertion of an instrumental delay at IF–band can perform the delay tracking,
but not the fringe stopping.

2.3.6 Separation of Delay Tracking and Fringe Stopping Due to
Frequency Conversion

The reason, why the insertion of the instrumental delay at IF–band can
perform only the delay tracking, but not the fringe stopping, may be easily
understood by examining Figure 38, which illustrates a time variation of the
phase spectrum of IF voltage signals shown in Figure 33, in a particular case
of a single–sideband reception of USB component.

Let us consider phase spectra in cross–power spectra of voltage signals
without delay insertion, and compare the phase spectrum in IF–band with
the one in RF band. In doing so, we ignore minor phase terms, such as LO
initial phase, visibility phase, and phase of bandpass characteristics, which
figure in equation (200), leaving only the main term due to the geometric
delay.

Then, the phase spectrum in RF–band is a straight line crossing the
origin, with inclination equal to the geometric delay τg0 , as shown in equation
(103) and Figure 19 for a simple interferometer model, or in equations (168),
and (177), for a more realistic interferometer.

However, after the frequency conversion, the phase spectrum in the IF–
band no longer crosses the origin, since the frequency conversion shifts the
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Figure 38: Necessity of fringe stopping, besides delay tracking in IF–band.
We assume here a USB single–sideband reception, and show only positive
frequency range of the phase spectrum, except in the bottom panel.
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band–limited spectrum at RF–band to IF band without changing its shape,
as shown in Figures 32, 33, and 38.

Therefore, the frequency converted phase spectrum in IF–band is now
represented by a sum of two components, namely an inclined straight line
ωτg0, crossing the origin, plus a frequency–independent phase shift equal to
ωLOτg0, where ωLO is the LO frequency, as illustrated in the right panels of
Figure 38 and in equation (200). This phase shift rapidly changes in time,
with the speed as high as several tens kHz (as we saw in the example of an
intercontinental VLBI observation with 22 GHz), due to the diurnal variation
of the geometric delay τg0.

The insertion of the instrumental delay at the IF–band compensates for
the first component, i.e. reduces the phase slope across the frequency band
to nearly zero, and thus makes it possible to get a white fringe in the mid-
dle of the coherence interval, as evident from equation (208). However, the
instrumental delay in the IF–band does not compensate for the second com-
ponent at all. Therefore, we still need to compensate for the rapid phase shift
in the second component, by somehow controlling the interferometer phase.
This operation is the “fringe stopping”, which is separated from the “delay
tracking” after the frequency conversion.

2.3.7 Actual Implementations of Delay Tracking

In early history of radio interferometry, analog delay cables, as schematically

transmission cable

delay cables

Figure 39: Analog delay cables used for delay tracking in early history of
radio interferometry.

illustrated in Figure 39, were used for delay tracking. N delay cables with
lengths τ0, 2τ0, 4τ0, 8τ0, · · ·, 2N−1τ0, were mechanically inserted into, and
removed from, a signal transmission cable of an interferometer, to realize
a time variable instrumental delay τi with a range of variation: τ0 ≤ τi ≤
(2N − 1)τ0. Of cource, the longest delay cable must have a length as large
as about a half of baseline length of the interferometer. Therefore, such
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analog delay cables could be used for connected–element interferometers with
baseline lengths of several hundreds meters, but definitely not for VLBIs.

write
address

read
address

delay

input data

delayed 
output data

ring buffer

Figure 40: A “ring buffer” used for digital delay tracking.

Recently, most of radio interferometers, including VLBIs, use digital delay
circuits for delay tracking. In order to use this technique, data signal is first
digitized, and then fed to a bulk memory, which is a kind of “ring buffer”,
schematically shown in Figure 40.

Data are written to, and read from, the ring buffer at different addresses,
and these write and read addresses are incremented by one at each “clock
timing pulse” of digital circuit. An interval of succcessive clock timing pulses
corresponds to a sampling interval ts of digitization of the data. Thus, if
the difference between the write and read addresses in the ring buffer is
n, an instrumental delay equal to nts is realized in this way. And further
shifting the write (or read) address periodically, once per a certain number
of clock timing pulses, we can vary this instrumental delay in time. We will
examine this digital delay tracking in more detail, when we will discuss VLBI
correlators.

2.3.8 Actual Implementations of Fringe Stopping

In connected–element interferometers, the fringe stopping is often carried out
by actively controlling the initial phases φLO1 and φLO2 of the LO reference
signals, as illustrated in Figure 41, so that

φLO1(t) − φLO2(t) = −ωLO τi(t) + ψLO1 − ψLO2, (228)
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Figure 41: Fringe stopping by active control of LO initial phases.

where ψLO1 − ψLO2 is a nearly constant part of the difference of the initial
phases of the LO signals, and τi is the instrumental delay, i.e., the theoretical
prediction of the geometric delay τg0 .

Assuming quasi–static LO initial phases, similarly to what we did in
subsection 2.1.8 for the geometric delay, we can just insert equation (228) to
equation (226) for the cross–power spectrum of IF voltages, and to equation
(227) for the expected correlation in the case of a continuum flat spectrum
source and rectangular filters, after the delay tracking at IF–band. Then, we
obtain the cross–power spectrum of IF voltages:

SfvI1v
′

I2
(ω)

=
1

4
A0 {e−i[ωLO ∆τg+ω∆τg+ψLO1−ψLO2] V(ωLO + ω)H1(ω)H∗

2(ω)

+ei[ωLO ∆τg−ω∆τg+ψLO1−ψLO2] V∗(ωLO − ω)H∗
1(−ω)H2(−ω)},

(229)

and expected correlation:

Rf
vI1v

′

I2
(0) =

A0GB | V |
2

sin(πB∆τg)

πB∆τg
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× [cos(ωLO∆τg + ωI∆τg + ψLO1 − ψLO2 − Φv)

+ cos(ωLO∆τg − ωI∆τg + ψLO1 − ψLO2 − Φv)],

(230)

respectively.
Now we can stop the rapid phase changes in the cross–power spectrum,

as well as in the expected correlation, provided that we can always keep the
residual delay to be nearly zero:

∆τg = τg{0} − τi ∼= 0.

Note that this active control of LO initial phases can stop the phase
changes both in USB and LSB components of the cross–power spectrum and
expected correlation of IF voltages, as evidenced by equations (229) and
(230). In particular, arguments of first and second cosine terms in the RHS
of equation (230), which show USB and LSB contributions, respectively, are
both stopped by this operation.

Another method for fringe stopping, which has been applied to VLBI
digital correlators, in particular, uses multiplication of a sinusoidal function
of time to an IF voltage, as shown in Figure 42.

D
cτg = D sinθ

θ

multiplier

integrator

delay
tracking

τi

correlator
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2 cos(ωLO τi)

fringe stopping

antenna 1 antenna 2

vI2(t)

vI1(t)

’vI1(t)f

Figure 42: Fringe stopping by multiplication of a sinusoidal function.
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In this method, a sinusoidal function

2 cos(ωLOτi), (231)

where ωLO is the LO frequency, and τi is the theoretically predicted instru-
mental delay, is multiplied to IF voltage vI1(t) of antenna 1.

Assuming again that ωLOτi is a quasi–static quantity, we obtain for a new
IF voltage vfI1(t) of antenna 1 after the multiplication of 2 cos(ωLOτi):

vfI1(t) = vI1(t)2 cos(ωLOτi) = vI1(t)(e
iωLOτi + e−iωLOτi), (232)

and for its Fourier transform ṽfI1(ω):

ṽfI1(ω) = ṽI1(ω)(eiωLOτi + e−iωLOτi), (233)

where ṽfI1(ω) is a Fourier transform of vI1(t). Then we have a cross–correlation
of Fourier transforms of IF voltages:

〈ṽfI1(ω)ṽ′∗I2(ω
′)〉 = 〈ṽI1(ω)ṽ′∗I2(ω

′)〉(eiωLOτi + e−iωLOτi), (234)

where ṽ′I2(ω) is the IF voltage of antenna 2 after the delay insertion. As-
suming jointly stationary random processes, we obtain for a cross–power
spectrum of IF voltages vfI1(t) and v′I2(t):

Svf
I1v

′

I2
(ω) = SvI1v

′

I2
(ω)(eiωLOτi + e−iωLOτi), (235)

where SvI1v
′

I2
(ω) is the cross–power spectrum of IF voltages vI1(t) and v′I2(t),

which is given in equation (226). Then, inserting equation (226) to equation
(235), we have

Svf
I1v

′

I2
(ω) =

1

4
A0

×{e−i[ωLO ∆τg+ω∆τg+φLO1−φLO2] V(ωLO + ω)H1(ω)H∗
2(ω)

+e−i[ωLO(τg0+τi)+ω∆τg+φLO1−φLO2] V(ωLO + ω)H1(ω)H∗
2(ω)

+ei[ωLO ∆τg−ω∆τg+φLO1−φLO2] V∗(ωLO − ω)H∗
1(−ω)H2(−ω)

+ei[ωLO(τg0+τi)−ω∆τg+φLO1−φLO2] V∗(ωLO − ω)H∗
1(−ω)H2(−ω)},

(236)

where ∆τg = τg0 − τi. In first and third terms in the RHS of this equation,
rapid oscillations of exponential terms are almost stopped, as long as τi ∼= τg0 .
But, in second and fourth terms in the RHS, even more rapid oscillations
with almost doubled frequency ωLO( ˙τg0 + τ̇i) remain. Contributions of these
rapidly oscillating terms almost disappear when the product of IF voltages
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are integrated for some duration of time in a correlator. Therefore, we have
an “effective” cross–power spectrum of IF voltages,

Svf
I1
v′

I2
(ω) =

1

4
A0

×{e−i[ωLO ∆τg+ω∆τg+φLO1−φLO2] V(ωLO + ω)H1(ω)H∗
2(ω)

+ei[ωLO ∆τg−ω∆τg+φLO1−φLO2] V∗(ωLO − ω)H∗
1(−ω)H2(−ω)},

(237)

which has essentially the same form as the one given in equation (229).
Note that, in this simple method of multiplication of a sinusoidal func-

tion to an IF voltage, phase drifts are stopped again in both USB and LSB
components.

2.4 Correlator Outputs

2.4.1 Multiplier and Integrator

As we saw earlier, a key component of a correlator in an interferometer is a
device with two inputs and one output, which is composed of a multiplier
and an integrator (Figure 43). The expected correlation, which is the sta-

multiplier

integrator

from antenna 1 from antenna 2

.

Figure 43: Multiplier and integrator as a key component of a correlator.

tistical expectation of the product of the voltage signals, must be contained
as a signal component in a multiplier output of such a correlator. Since
the expected correlation does not rapidly oscillate any more after the delay
tracking and fringe stopping, we can integrate (time–average) the multiplier

113



output during some time to suppress the noise component, and detect this
nearly constant expected correlation itself with a high signal to noise ratio.
Therefore, an output of an actual correlator can be well approximated by
the expected correlation after the delay tracking and fringe stopping. The
expected correlation is easily derived from the cross–power spectrum (CPS)
of the IF voltages by an inverse Fourier transformation, as we showed in
equation (204).

Now we have slightly different notations for the CPS of IF voltages in
equation (229) and in equation (237), depending on practical implementa-
tions of the fringe stopping, though they are essentially equivalent to each
other. We adopt, hereafter, the expression given in equation (237), which
is familiar in VLBI practice, for describing the CPS after the delay tracking
and fringe stopping.

Then, the expected correlation, after the delay tracking and fringe stop-
ping, is given by

Rvf
I1v

′

I2
(0) =

A0

4π
<


e−i(ωLO∆τg+φLO1−φLO2)

∞
∫

0

V(ωLO + ω) e−iω∆τg H1(ω)H∗
2(ω) dω

+ ei(ωLO∆τg+φLO1−φLO2)

∞
∫

0

V∗(ωLO − ω) e−iω∆τg H∗
1 (−ω)H2(−ω) dω



 .

(238)

In the special case of a continuum flat spectrum source and rectangular filters,
the expected correlation will have essentially the same form as the one given
in equation (230):

Rvf
I1
v′

I2
(0) =

A0GB | V |
2

sin(πB∆τg)

πB∆τg
× [cos(ωLO∆τg + ωI∆τg + φLO1 − φLO2 − Φv)

+ cos(ωLO∆τg − ωI∆τg + φLO1 − φLO2 − Φv)].

(239)

We will use expected correlations given in equations (238) and (239) as
theoretical expressions of the correlator outputs.

In VLBI, no operation for delay tracking and fringe stopping is done,
usually, in observing stations. Instead, they are done in VLBI correlators.
Therefore, a VLBI correlator is a little more complicated than the mere
multiplier and integrator, as we will see later.
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2.4.2 Single Sideband (USB or LSB) Reception

So far, we considered a case of double sideband (DSB) reception, i.e. a case
when we receive signals contained in both upper sideband (USB) and lower
sideband (LSB) of LO frequency in original RF–band spectrum. In this case,
the USB and LSB contributions are superposed in IF–band spectrum, as we
saw earlier.

The DSB reception is not convenient for observing line spectrum sources,
since different lines in USB and LSB are mixed up in the same IF spectrum.
Also, the DSB reception causes additional complications in data calibrations.
Therefore, in VLBI, we mostly use a single sideband (SSB), i.e., either of USB
or LSB, reception.

Amplitude and phase spectra of IF voltage signals, which were shown in
Figure 33 in the DSB reception case, now take simpler forms, in the SSB
reception case, as shown in Figure 44.

amplitude

phase
ω

ω

ωLO

ωLO−ωLO

−ωLO 0

0

USB            USB
amplitude

phase
ω

ω

ωLO

ωLO−ωLO

−ωLO 0

0

          LSB LSB  

Figure 44: Amplitude and phase spectra of IF voltage signals in USB (left)
and LSB (right) receptions. For simplicity, contributions of the geometric
delay only are shown in the phase spectra.

Since, cross–power spectra (CPS) of IF voltages both in USB and LSB
receptions are Hermitian symmetric, as illustrated in Figure 44, we do not
lose generality if we confine ourselves to consider only positive frequency
range (ω ≥ 0) of the spectra.

In positive frequency range ω ≥ 0, cross–power spectra of IF voltages
before the delay tracking and fringe stopping in USB and LSB receptions are
given by
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SUSBvI1vI2
(ω) =

1

4
A0 e

−i[ωLO τg0+ωτg0+φLO1−φLO2] V(ωLO + ω)H1(ω)H∗
2(ω),

(240)

SLSBvI1vI2
(ω) =

1

4
A0 e

i[ωLO τg0−ωτg0+φLO1−φLO2] V∗(ωLO − ω)H∗
1(−ω)H2(−ω),

(241)

which correspond to positive frequency sides (ω ≥ 0) of the USB and LSB
spectra illustrated in Figure 44.

After the delay tracking and fringe stopping, they are reduced to

SUSB
vf

I1
v′

I2

(ω) =
1

4
A0 e

−i[ωLO ∆τg+ω∆τg+φLO1−φLO2] V(ωLO + ω)H1(ω)H∗
2(ω),

(242)

SLSB
vf

I1
v′

I2

(ω) =
1

4
A0 e

i[ωLO ∆τg−ω∆τg+φLO1−φLO2] V∗(ωLO − ω)H∗
1(−ω)H2(−ω),

(243)

in the positive frequency range ω ≥ 0.
We can rewrite equations (240) and (241), as well as equations (242) and

(243), using amplitudes and phases of the complex visibility and bandpass
characteristics, which we introduced in equations (198) and (199).

Then, before the delay tracking and fringe stopping, the USB spectrum
in ω ≥ 0 is given by

SUSBvI1vI2
(ω) = Ap(ω) e−iΦp(ω, t),

with amplitude:

Ap(ω) =
1

4
A0 | V(ωLO + ω) | | H1(ω)H∗

2(ω) |,
and phase:

Φp(ω, t) = (ωLO + ω)τg0 + φLO1 − φLO2 − Φv(ωLO + ω) − Φb(ω),

(244)

while the LSB spectrum in ω ≥ 0 is given by

SLSBvI1vI2
(ω) = An(ω) e−iΦn(ω, t),

with amplitude:

An(ω) =
1

4
A0 | V(ωLO − ω) | | H1(−ω)H∗

2 (−ω) |,
and phase:

Φn(ω, t) = −(ωLO − ω)τg0 − φLO1 + φLO2 + Φv(ωLO − ω) + Φb(−ω).

(245)
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After the delay tracking and fringe stopping, the USB spectrum in ω ≥ 0
becomes

SUSB
vf

I1v
′

I2

(ω) = Ap(ω) e−i∆Φp(ω, t),

with amplitude:

Ap(ω) =
1

4
A0 | V(ωLO + ω) | | H1(ω)H∗

2(ω) |,
and residual phase:

∆Φp(ω, t) = (ωLO + ω)∆τg + φLO1 − φLO2 − Φv(ωLO + ω) − Φb(ω),

(246)

while the LSB spectrum in ω ≥ 0 becomes

SLSB
vf

I1
v′

I2

(ω) = An(ω) e−i∆Φn(ω, t),

with amplitude:

An(ω) =
1

4
A0 | V(ωLO − ω) | | H1(−ω)H∗

2(−ω) |,
and residual phase:

∆Φn(ω, t) = −(ωLO − ω)∆τg − φLO1 + φLO2 + Φv(ωLO − ω) + Φb(−ω),

(247)

where ∆τg is the residual delay: ∆τg = τg0 − τi.

2.4.3 Correlator Outputs in Single Sideband Reception

As we discussed earlier, correlator outputs are closely approximated by the
expected correlations after the delay tracking and fringe stopping. Therfore,
theoretical expressions for the correlator outputs in USB and LSB receptions
are given by

RUSB
vf

I1
v′

I2

(0) =
A0

4π
<[e−i(ωLO∆τg+φLO1−φLO2)

∞
∫

0

V(ωLO+ω) e−iω∆τg H1(ω)H∗
2(ω) dω],

(248)
and

RLSB
vf

I1v
′

I2

(0) =
A0

4π
<[ei(ωLO∆τg+φLO1−φLO2)

∞
∫

0

V∗(ωLO−ω) e−iω∆τg H∗
1 (−ω)H2(−ω) dω],

(249)
respectively.
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If we assume the case of rectangular filters and constant visibility, the
above equations are reduced to

RUSB
vf

I1v
′

I2

(0) =
A0GB | V |

2

sin(πB∆τg)

πB∆τg
cos(ωLO∆τg+ωI∆τg+φLO1−φLO2−Φv),

(250)
and

RLSB
vf

I1v
′

I2

(0) =
A0GB | V |

2

sin(πB∆τg)

πB∆τg
cos(ωLO∆τg−ωI∆τg+φLO1−φLO2−Φv).

(251)
For a more general case of an arbitrary filter shape, when the complex

visibitlity is assumed to be constant only in each of USB and LSB receiving
bandwidths, and the filters, with a passband:

ωI − ∆ω/2 ≤ | ω | ≤ ωI + ∆ω/2,

are not necessarily rectangular, we have

∞
∫

0

V(ωLO + ω) e−iω∆τg H1(ω)H∗
2(ω) dω

= V(ωLO + ω)

ωI+∆ω
2

∫

ωI−
∆ω
2

e−iω∆τg H1(ω)H∗
2(ω) dω

= V(ωLO + ω) e−iωI∆τg

∆ω
2
∫

−∆ω
2

e−iω
′∆τg H1(ωI + ω′)H∗

2 (ωI + ω′) dω′,

(252)

in the USB reception, and

∞
∫

0

V∗(ωLO − ω) e−iω∆τg H∗
1 (−ω)H2(−ω) dω

= V∗(ωLO − ω)

ωI+∆ω
2

∫

ωI−
∆ω
2

e−iω∆τg H∗
1 (−ω)H2(−ω) dω

= V∗(ωLO − ω) e−iωI∆τg

∆ω
2
∫

−∆ω
2

e−iω
′∆τg H∗

1 (−ωI − ω′)H2(−ωI − ω′) dω′,

(253)
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in the LSB reception.
Now, let us introduce “bandwidth patterns” B12:

BUSB12 (B,∆τg) =
1

4π

∆ω
2
∫

−∆ω
2

e−iω
′∆τg H1(ωI + ω′)H∗

2(ωI + ω′) dω′, (254)

BLSB12 (B,∆τg) =
1

4π

∆ω
2
∫

−∆ω
2

e−iω
′∆τg H∗

1 (−ωI − ω′)H2(−ωI − ω′) dω′, (255)

for USB reception and LSB reception, respectively. The suffix ‘12’ here ac-
centuates that this pattern comes from bandpass characteristics of receiving
systems in antennas 1 and 2. Then, if we represent complex visibilities and
bandwidth patterns through their amplitudes and phases:

V(ωLO + ωI) =| VU | eiΦU
v and V(ωLO − ωI) =| VL | eiΦL

v , (256)

and

BUSB12 (B,∆τg) =| BU12 | eiΦ
U

B and BLSB12 (B,∆τg) =| BL12 | eiΦ
L

B , (257)

equations (248) and (249) for theoretical expressions for correlator outputs
are reduced to

RUSB
vf

I1v
′

I2

(0) = A0 | VU | | BU12 | cos(ωLO∆τg +ωI∆τg +φLO1 −φLO2 −ΦU
v −ΦU

B),

(258)
and

RLSB
vf

I1
v′

I2

(0) = A0 | VL | | BL12 | cos(ωLO∆τg−ωI∆τg +φLO1 −φLO2 −ΦL
v +ΦL

B),

(259)
for USB reception and LSB reception, respectively.

2.4.4 Fringe Amplitude and Fringe Phase

The above equations again show the white fringes, with bandwidth patterns
in | B12 | terms and fringe patterns in cosine terms.

In general, when a correlator output shows a sinusoidal fringe pattern
A cosΦ in the center of the coherence interval where ∆τg ≈ 0, we call the
amplitude A of the fringe pattern the “fringe (or correlation) ampli-
tude”, and the phase Φ of the fringe pattern the “fringe (or correlation)
phase”.
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According to the theoretical expressions of correlator outputs in equations
(258) and (259), theoretical expressions of fringe amplitude AU and fringe
phase ΦU in USB reception are given by

AU = A0 | VU | | BU12 |,
ΦU = ωLO∆τg + ωI∆τg + φLO1 − φLO2 − ΦU

v − ΦU
B, (260)

and theoretical expressions of fringe amplitude AL and fringe phase ΦL in
LSB reception are given by

AL = A0 | VL | | BL12 |,
ΦL = ωLO∆τg − ωI∆τg + φLO1 − φLO2 − ΦL

v + ΦL
B . (261)

In practice of interferometric observations, the fringe amplitude and fringe
phase in the correlator outputs are often called as “visibility amplitude”
and “visibility phase”. Strictly speaking, however, one must correct the
fringe amplitude and fringe phase for the residual delay, bandwidth pattern,
and other effects, in order to obtain proper visibility amplitude | V | and
visibility phase Φv as defined in equations (165) and (166). Moreover, the
fringe phase contains the residual delay ∆τg of the reference direction of the
radio source, which could be a useful observable for high precision astrometry
and geodesy, if one can resolve the cycle ambiguity and properly correct
the atmospheric and other disturbing effects by means of a suitable phase
compensation technique, while the visibility phase in equation (166) is defined
to be free from the residual delay of the source reference direction. Therefore,
we will henceforth distinguish the terms “fringe amplitude and phase” from
the “visibility amplitude and phase”.

In the case of the rectangular filters and constant visibility, equations
(258) and (259) are of course reduced to equations (250) and (251), since in
this particular case,

V(ωLO + ωI) = V(ωLO − ωI) =| V | eiΦv ,

and

BUSB12 (B,∆τg) = BLSB12 (B,∆τg) =
GB

2

sin(πB∆τg)

πB∆τg
. (262)

2.4.5 Group Delay and Fringe Frequency

As we discussed so far, the delay tracking is aimed at reducing the slope of the
phase spectrum in the observed bandwidth to nearly zero, thus facilitating
the fringe detection in the middle of the coherence interval. Therefore, what is

120



needed for successful delay tracking is an accurate prediction or estimation of
the phase slope, i.e. frequency derivative of the phase spectrum of the cross–
power spectrum of voltage signals, which is to be used as the compensating
instrumental delay. We call the frequency derivative of the phase spectrum
Φ(ω, t) the “group delay” τG:

τG =
∂Φ(ω, t)

∂ω
, (263)

where Φ(ω, t) can be Φp(ω, t) of equation (244) in case of USB reception, or
Φn(ω, t) of equation (245) in case of LSB reception. Thus, we need a good
prediction or estimation of the group delay for successful delay tracking.

In an ideally simple case, the group delay is nothing but the geometric de-
lay itself (see, for example, equation (103)). In actuality, however, equations
(244) and (245) show phase terms other than the contribution of the geo-
metric delay, which may depend on the frequency. Moreover, the phase slope
may be affected by other effects as well, such as clock offsets among VLBI an-
tennas, atmospheric propagation delays, cable delays in signal transmission
systems, and so on, which we will see in discussions specific to VLBI. Furher-
more, if some propagation delay is dispersive (i.e. frequency–dependent),
then the phase slope will also depend on the frequency derivative of the dis-
persive delay. In general, the group delay is a quantity which includes all the
effects mentioned above.

On the other hand, the fringe stopping is an operation to compensate
the rapid time variation of the interferometer phase. This is done for the
purpose to integrate the correlation results for some duration of time, which
is sufficient to detect the white fringe with a good enough signal to noise
ratio. Therefore, what is needed for successful fringe stopping is an accurate
prediction or estimation of the time derivative of the phase spectrum of
the correlated signals, which can be used for compensating the rapid phase
shift. We call the time derivative of the phase spectrum Φ(ω, t) the “fringe
frequency” or “fringe rate”, and denote it as Fr:

Fr =
∂Φ(ω, t)

∂t
, (264)

where Φ(ω, t) can be Φp(ω, t) of equation (244) in case of USB reception, or
Φn(ω, t) of equation (245) in case of LSB reception, as before. Thus, we need
a good prediction or estimation of the fringe frequency for successful fringe
stopping.

Again, the actual fringe frequency may include time derivatives of the
clock offsets, propagation delays, cable delays, and other terms, besides the
time derivative of the geometric delay.
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For connected–element radio interferometers (CERI), a predicted instru-
mental delay τi, usually based on the geometric delay model only, is accurate
enough to make ∆τg0 almost zero. Therefore, the fringe is normally found
within the coherence interval, and the correlated signals can be integrated
for sufficiently long time, by applying the delay tracking and fringe stopping,
based on the prediction.

In VLBI, accuracies required to delay tracking and fringe stopping are
much higher than in CERI, as we saw earlier. Therefore, the theoretical
prediction alone is usually not sufficient for obtaining fringes. Hence, one
must first perform a special search for estimating the group delay and fringe
frequency values, using the observed VLBI data themselves. If the search is
successful, then the delay tracking and fringe stopping are done satisfactorily,
and one can finally detect the correlation peak and the white fringe.

This is an additional labor imposed to VLBI, compared with CERI. But
this “necessity” had led to the birth and the remarkable success of the geode-
tic VLBI.

2.4.6 Complex Correlator

When we achieve a complete fringe stopping, the residual delay is kept always
zero (∆τg = 0), and, therefore, the correlator outputs given in equations (258)
and (259) become constants in time. For example, in case of USB reception,
we have

RUSB
vf

I1v
′

I2

(0) = A0 | VU | | BU12 | cos(φLO1 − φLO2 − ΦU
v − ΦU

B), (265)

where argument of cosine function (fringe phase) is constant in time.
This is not very convenient for further analysis, since, if the correlator

output is just a constant, we cannot separately obtain the fringe amplitude
and the fringe phase.

In order to get rid of this inconvenience, we use so–called complex corre-
lators. Complex correlators are two sets of multipliers and integrators which
provide two correlator outputs of the same signals, but with fringe phases
different to each other by 90 degrees.

Figure 45 shows a design of a complex correlator which uses a quadrature
phase–shift network. The quadrature phase–shift network is a special electric
circuit which changes phases of all frequency components of a signal by 90
degrees. Then, in case of the USB reception, an output of “real correlator”
Rr will have a form such as given in equation (265), i.e.,

Rr = A0 | V | | B12 | cos(φLO1 − φLO2 − Φv − ΦB), (266)
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while an output of “imaginary correlator” Ri will be 90 degrees shifted in
phase, i.e.,

Ri = −A0 | V | | B12 | sin(φLO1 − φLO2 − Φv − ΦB). (267)

Thus, it will be easy to separate fringe amplitude and fringe phase, by
using outputs of these two correlators.

Real
Correlator

Imaginary
Correlator

multiplier

integrator

.

multiplier

integrator

.

from antenna 1 from antenna 2

QPN

sin cos

+90

Figure 45: A complex correlator using a quadrature phase-shift network.

For a more general case when fringe is almost stopped but still a small
residual delay ∆τg remains, we have, from equation (258),

Rr = A0 | V | | B12 | cos((ωLO + ωI)∆τg + φLO1 − φLO2 − Φv − ΦB), (268)

and

Ri = −A0 | V | | B12 | sin((ωLO + ωI)∆τg + φLO1 − φLO2 − Φv − ΦB), (269)

for real and imaginary correlator outputs in USB reception.
Instead of the quadrature phase–shift network, we can use two LO refer-

ence signals in the frequency conversion, shifted in phase by 90 degrees.
Also, we can use multiplications of cosine and sine functions of ωLOτi in

the fringe stopping, as we will see in discussions of VLBI correlators.
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2.4.7 Projected Baseline

We discussed earlier the fringe pattern in the case when we observe a source
at a direction nearly perpendicular to the interferometer baseline. When the
delay tracking and fringe stopping are properly performed, however, we are
in position to catch a source, within the coherence interval, at any direction
of the sky.

D
D cos θ

θ

λ
D cos θ

Figure 46: Fringe spacing at arbitrary direction of the sky with projected
baseline length D cos θ.

In such a case, our interferometer is equivalent to the one having a baseline
length D cos θ in Figure 46. This “effective baseline length viewed from
the source” is called “projected baseline length”, since this is a length of a
baseline projected onto a plane perpendicular to the source direction. The
fringe pattern is now determined by the projected baseline, as illustrated in
Figure 46. Therefore, the fringe pattern now varies in time, as we track a
source, which moves in the sky changing the angle θ due to the diurnal motion
of the Earth. In particular, the fringe spacing in the sky is now expressed as

∆θF =
λ

D cos θ
, (270)

and also varies in time.
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3 Source Structure and Correlated Flux Den-

sity

We saw earlier how a radio source structure (or, more specifically, intensity
distribution) is related to an observable of radio interferometry, the complex
visibility. Using this relationship, we can infer the radio source structure by
analyzing observed complex visibilities.

Figure 47: Helical structure of a jet ejected from a distant quasar 3C273
revealed by a VSOP (VLBI Space Observatory Program) observation.

This is the basis of an extensive field on the image synthesis of astro-
nomical objects with radio interferometry, which has enabled us to produce
high–resolution images of astronomical objects billions of light years away
(as an example, see Figure 47). However, details of the image synthesis tech-
niques are out of scope of this note. Here, we confine ourselves to a general
formulation of the problem and a consideration of the effect of the finite
angular size of the source on the correlator output.
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3.1 Basic Equations of Image Synthesis

3.1.1 Complex Visibility as an Observable

A complex correlator yields the fringe amplitude and fringe phase for an
observed radio source, which enable us to derive the complex visibility of the
source. In fact, in equations (268) and (269), we gave theoretical expressions
for outputs of a complex correlator in a case of the USB reception:

Rr = A0 | V | | B12 | cos((ωLO + ωI)∆τg + φLO1 − φLO2 − Φv − ΦB),

Ri = −A0 | V | | B12 | sin((ωLO + ωI)∆τg + φLO1 − φLO2 − Φv − ΦB).

Therefore, theoretical expressions of fringe amplitude and fringe phase are
given by equation (260):

A = A0 | V | | B12 |,

and
Φ = (ωLO + ωI)∆τg + φLO1 − φLO2 − Φv − ΦB,

respectively.
Consequently, if we achieve a high enough S/N rartio, and if we are

allowed to calibrate the observed fringe amplitude and fringe phase for geo-
metric mean of effective apertures A0, the bandwidth pattern | B12 | eiΦB , the
residual delay ∆τg, and the difference in LO initial phases φLO1 − φLO2, on
the basis of suitable measurements or estimations, we can derive the complex
visibility of the observed source:

V(ω) =| V(ω) | eiΦv(ω),

where we denote by ω the center frequency of the RF band, i.e., ω = ωLO+ωI.

3.1.2 Visibility and Intensity in EW–NS Coordinate System

We showed in equation (165), that the complex visibility V(ω) is related to
the source intensity distribution Iν(σ) as

V(ω) =
∮

AN (σ) Iν(σ) e−i2πDλ·σ dΩ, (271)

where AN(σ) is the normalized power pattern of an interferometer, Iν(σ)
is the source intensity distribution, Dλ = D/λ is the baseline vector D

normalized by the wavelength λ of the observation, and σ is an offset vector
of a direction s in a radio source from a reference direction s0, i.e., σ = s−s0.
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The meaning of equation (271) becomes clearer if we introduce a rect-
angular coordinate system, whose 3-rd axis is chosen towards the reference
direction s0 of the source, and 1-st and 2-nd axes are chosen in the east (right
ascension) and the north (declination) directions, respectively (Figure 48).

Taking into account that σ = s − s0 is a vector difference of two unit
vectors s and s0, we denote components of the offset vector σ in this new

D

E

N

E

N

u

v

ξ

η

s0 s

σ

u

v
w

Figure 48: Source brightness distribution and projected baseline in an EW–
NS plane perpendicular to the reference direction s0 of the source.

coordinate system as:

σ = (ξ, η,
√

1 − ξ2 − η2 − 1). (272)

Also, we denote components of the baseline vector D and the normalized
baseline vector Dλ as:

D = (u, v, w), (273)
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and
Dλ = (uλ, vλ, wλ), (274)

respectively, in the same coordinate system, where

uλ =
u

λ
, vλ =

v

λ
, and wλ =

w

λ
.

Note that ξ and η are taken along right ascention and declination di-
rections, respectively, in a celestial equatorial system. Note, also, that w is
related to the geometric delay of the reference direction τg0 by an equation:
w = cτg0 .

Then, we describe the argument of the exponential term in the complex
visibility in equation (271) as:

2πDλ · σ = 2π[uλ ξ + vλ η + wλ (
√

1 − ξ2 − η2 − 1)]. (275)

Also, we describe the solid angle element dΩ in the same equation via dξ dη
as:

dΩ =
dξ dη√

1 − ξ2 − η2
, (276)

since dξ dη is the projection of dΩ in the plane perpendicular to s0 (Figure
49).

s0 s

dξδηdΩ

celestial
sphere

Figure 49: Solid angle element dΩ and area element dξ dη in a plane perpen-
dicular to reference direction s0.

Then, the complex visibility in equation (271) is given in terms of ξ, η,
uλ, vλ, and wλ, by

V(ω) =

∞
∫

−∞

∞
∫

−∞

AN(ξ, η)Iν(ξ, η)e
−i2π[uλ ξ+vλ η+wλ (

√
1−ξ2−η2−1)] dξ dη√

1 − ξ2 − η2
.

(277)
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This equation can be regarded as an integral equation for the intensity
distribution Iν(ξ, η) of a radio source with given complex visibility V(ω).
The purpose of the image synthesis is to get an intensity distribution (an
“image”) of a radio source by solving this integral equation using observed
complex visibilities.

3.1.3 Approximation of a Celestial Sphere by a Tangent Plane

It is not easy to solve the integral equation (277) in its general form. However,
if we have a narrow range of mapping, where ξ � 1 and η � 1, and second
order terms ξ2 and η2 can be neglected, the equation becomes much simpler.

This narow–range condition corresponds to an approximation of a small
part of the celestial sphere, where we would like to draw an image map of
a radio source, by a tangent plane at the reference direction s0 (see Figure
50).

s0

celestial
sphere

plane tangent
to sphere at s0

small range
of  mapping

s

Figure 50: Celestial sphere can be approximated by a tangent plane for a
small range of mapping.

Let us then examine conditions under which ξ2 and η2 terms can be
actually neglected.

ξ2 and η2 terms appear in two places of equation (277), namely in

dξ dη√
1 − ξ2 − η2

, and e−i2π[uλ ξ+vλ η+wλ (
√

1−ξ2−η2−1)].
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In the first term:
dξ dη√

1 − ξ2 − η2
, we can neglect ξ2 and η2, provided only

that | ξ |� 1 and | η |� 1.
In the second term, which can be approximated by

e
−i2π[uλ ξ + vλ η + wλ (

√

1 − ξ2 − η2 − 1)] ∼= e
−i2π[uλ ξ + vλ η −

1

2
wλ (ξ2 + η2)]

,
(278)

we must be a little careful. Here, ξ2 and η2 terms appear in a phase of a
periodic function, for which only a residue of 2π is meaningful. Therefore,
it is not always possible to neglect a term in a phase even when it is much
smaller than other phase terms. A phase term can be safely neglected only
when it is absolutely small as a phase (for example, smaller than 0.1 radian,
say). If we require this “� 0.1 radian” condition, then ξ2 and η2 in equation
(278) are negligible when

πwλ(ξ
2 + η2) � 0.1 radian. (279)

Let us now examine how this condition could be satisfied. Let us denote a

(ξ,η)

θf

Dλ

wλ

Figure 51: Length of wλ (left) and a range of mapping (right).

full range of our intended image map (or, range of mapping) as θf . Then,
obviously

ξ2 + η2 ≤ (
θf
2

)2,

(see Figure 51). Therefore, the condition in equation (279) is satisfied if

πwλ(
θf
2

)2 ≤ 0.1 radian.

Adopting as a maximum value for wλ:

wλmax
= Dλ =

D

λ
,
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in view of Figure 51, we see that the condition in equation (279) is readily
satisfied if

π

(

θf
2

)2
D

λ
≤ 0.1, and therefore θ2

f ≤
0.4

π

λ

D
,

which is approximately equivalent to

θf ≤
1

3

√

λ

D
. (280)

Thus, the tangent plane approximation, where ξ2 and η2 are neglected, is
adequate, if our range of mapping θf satisfies the condition given in equation
(280).

It is still left to us to examine whether equation (280) is a realistic con-
dition in actual mappings of radio source images.

Angular resolution θr of an interferometric observation is roughly given
by the minimum fringe spacing:

θr ≈
λ

D
.

Since number of grid points (“pixels”) required for an image mapping is
proportional to (θf/θr)

2, a load of numerical processing becomes heavier, as
the range of mapping θf becomes much wider than the angular resolution θr.

Moreover, it is usually meaningless to select a too wide range of mapping,
since a radio source, which is much extended than the fringe spacing of an
interferometer θr, tends to be “resolved out” and becomes “invisible” for the
interferometer, as we will see in more detail in later discussions.

Therefore, if we select a range, which is 30 times as large as the angular
resolution, as a realistic range of mapping:

θf ≈ 30 × θr ≈ 30 × λ

D
,

then, the condition of equation (280) for the tangent–plane approximation
becomes

30
λ

D
≤ 1

3

√

λ

D
, (281)

or
√

λ

D
≤ 1

90
, and, hence,

λ

D
≤ 1

8100
≈ 0.◦007 ≈ 25 arcsec. (282)
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As we saw in Table 2, such a condition on the fringe spacing is generally
satisfied in modern interferometers, except for m–wave or cm–wave CERI
arrays of relatively short baselines. In VLBI, as far as our range of mapping
is ≤ 30 × (λ/D), we can safely use the tangent–plane approximation. Figure
47 gives an example, where the angular resolution is shown as an elliptical
“restoring beam” in the right edge.

Figure 52: 15 GHz map of a quasar 3C279 observed with VLBA (Wajima
and Iguchi, private communication in 2005).

Another example of a beautiful VLBI image of a quasar 3C279 observed
at 15 GHz with VLBA (Wajima and Iguchi, private communication in 2005)
also covers a range of mapping which is smaller than 30 times of the angular
resolution (the full width half maximum (FWHM) of an interferometer beam
is shown by an ellipse in the left bottom corner).

For typical CERI and VLBI, we have:

• CERI of λ = 1 cm (30 GHz) and D = 2 km:

λ

D
= 5 × 10−6 radian = 1 arcsec,
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1

3

√

λ

D
= 7 × 10−4 radian = 140 arcsec.

• VLBI of λ = 1.35 cm (22 GHz) and D = 2300 km:

λ

D
= 6.0 × 10−9 radian = 1.2 milliarcsec (mas),

1

3

√

λ

D
= 2.6 × 10−5 radian = 5.3 arcsec.

• VLBI of λ = 2.3 mm (129 GHz) and D = 500 km:

λ

D
= 4.6 × 10−9 radian = 1.0 milliarcsec (mas),

1

3

√

λ

D
= 2.3 × 10−5 radian = 4.7 arcsec.

In all above examples, the condition in equation (281) is well satisfied.
Important exceptions, where the tangent–plane approximation is not ap-

plicable, are wide–field mappings of maser sources in massive star–forming
regions. They sometimes cover sky ranges of several tens arcseconds, yet in-
dividual maser features, of which they consist, are compact at milliarcsecond
(mas) level, and thus well detectable with intercontinental VLBIs. In such
a case, the range of mapping θf could be far larger than 30 θr. Therefore,
one must properly take into account sphericity of the map surface in such
wide–field mappings.

3.1.4 Interferometer is a Fourier Transformer

Under the tangent plane approximation, equation (277) is reduced to

V(ω) = V(uλ, vλ) =

∞
∫

−∞

∞
∫

−∞

AN(ξ, η)Iν(ξ, η)e
−i2π(uλ ξ+vλ η)dξ dη, (283)

where we reexpressed V(ω) as V(uλ, vλ), stressing dependence of the visibility
on “normalized projected baseline components” uλ and vλ.

Then, it is evident that the complex visibility V(uλ, vλ), as given in equa-
tion (283), is a two–dimensional Fourier transform of the source brightness
distribution Iν(ξ, η) at “spatial frequency” values uλ and vλ.

Consequently, we can regard a radio interferometer as a “Fourier Trans-
formation Device”, which yields, at the correlator output, a two–dimensional
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Fourier component of the source brightness distribution on the sky, at spa-
tial frequencies corresponding to two components of the normalized projected
baseline, uλ and vλ. The Fourier transformation relation described in equa-
tion (283) is called “van Cittert–Zernike Theorem”.

Naturally, the source brightness distribution is restored from the mea-
sured visibilities by the inverse Fourier transformation:

AN (ξ, η)Iν(ξ, η) =

∞
∫

−∞

∞
∫

−∞

V(uλ, vλ)e
i2π(uλ ξ+vλ η) duλdvλ, (284)

and then by correcting the normalized power pattern of the interferometer
AN (ξ, η). This is the basis of the astrophysical imaging of the radio source
structure by means of radio interferometry under the tangent plane approxi-
mation. This is important also for geodetic and astrometric VLBI, when we
calibrate the effect of the source structure on the measured delay.

Of course, it is impossible to perform a complete inverse Fourier trans-
formation, unless a continuous distribution of the visisbility is available over
the whole spatial frequency domain, the uv–plane. Nevertheless, a better
restoration is achieved, with suitable image processing software, when the
visibilities are sampled at many uλ, vλ points, which nearly homogeneously
cover the uv–plane. It is therefore important to have a good coverage of
uv–plane for radio interferometry observations aimed at astrophysical source
imaging.

3.2 uv–Coverage

The Earth’s diurnal rotation changes the direction and length of a projected
baseline of a ground–based interferometer in the uv–plane, and thus helps
us to sample visibilities at different uλ, vλ points. Since the interferometer
baseline rotates around a nearly fixed spin axis of the Earth, the trajectory
of the projected baseline is a circle, if the observed source is located at the
celestial pole. The trajectory is a linear oscillation when the source is at the
equator, and is an ellipse, for all other directions in between the celestial
equator and the 2 celestial poles. For two stations 1 and 2 on the surface
of the Earth, we have two baseline vectors with opposite directions D12 and
D21 = −D12 connecting these two stations. Therefore, in general, we have
two point–symmetric arcs of ellipses on the uv–plane for a pair of stations
(Figure 53).

Configurations of radio interferometer arrays are designed to achieve good
coverages of the uv–plane, from the trajectories of projected baselines formed
by their antennas.
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Figure 53: If we place an end of a baseline vector at the center of the rotating
Earth, by a parallel translation, a tip of the vector draws an ellipse, in general,
viewed from a radio source. EW and NS components of the projected baseline
are the u and v components. Since we have two vectors of equal lengths and
opposite directions which connect two stations, we have two point–symmetric
elliptical trajectories.

3.2.1 uv–Trajectories

Figure 54 shows geometry of the diurnal rotation of a baseline vector D.
We use an Earth–fixed Cartesian X, Y, Z coordinate system with Z axis

directed towards North Pole, X axis directed towards Greenwich Meridian,
and Y axis which completes a right–handed system. Components of the
baseline vector D in this system are denoted by DX , DY , and DZ . Direction
of an observed radio source is given by the declination δ and Greenwich hour
angle H of the source with respect to this Earth–fixed coordinate system.

First, let us look at the baseline vector from a direction of the North Pole
(bottom–left panel of Figure 54). We see two sets of rectangular axes X, Y
and S, E in the equatorial plane, which is now perpendicular to our line of
sight. S axis here is chosen along a plane containing both the North Pole axis
and the radio source direction, which we call the “PS–plane”. We then con-
sider S and E components of the baseline vector D in the equatorial plane.
E component is just equal to the u component, i.e. the EW–component of
the baseline vector viewed from the radio source (top–left panel of Figure
54). As for S component of the baseline D, we denote it as DS. Since S,
E and X, Y axes are inclined to each other by the Greenwich hour angle
H, the u and DS components and DX and DY components of the baseline
vector D are related to each other by equations:

u = DX sinH +DY cosH, (285)
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Figure 54: Geometrical relationship between DX , DY , and DZ components of
a baseline vector D and u, v coordinates. Here, X, Y, Z coordinate system is
an Earth–fixed right–handed Cartesian system with Z axis towards the North
Pole P and X axis towards Greenwich Meridian. H and δ are Greenwich
hour angle and declination of an observed radio source. The Earth–fixed
baseline vector is shown as viewed from the radio source (top, left), viewed
from west (top, left), and viewed from the North Pole (bottom).
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and
DS = DX cosH −DY sinH. (286)

Next, when we look at the baseline vector D along the E axis from the
west side (top–right panel of Figure 54), we see equatorial S axis and polar
Z axis in the PS–plane, which is now perpendicular to the line of sight. The
radio source direction is offset from the equatorial plane by the declination δ.
Therefore, the component of the baseline vector D in an axis perpendicular to
the source direction, which is nothing but the NS–component of the baseline
vector viewed from the radio source (top–left panel of Figure 54), i.e. the v
component, is related to the DS and DZ components by an equation:

v = −DS sin δ +Dz cos δ. (287)

Combining equations (286) and (287), we obtain

v = −(DX cosH −DY sinH) sin δ +DZ cos δ, (288)

for v component. Equations (285) and (288) allow us to calculate a uv–
trajectory of a radio source with varying Greenwich hour angle H.

From equations (285) and (288), we obtain an equation of ellipse:

u2 +
(v −DZ cos δ)2

sin2 δ
= D2

X +D2
Y , (289)

which clearly shows that uv–trajectories are really ellipses.
In view of the point symmetry property mentioned above, a set of u and

v:

u = −DX sinH −DY cosH,

v = (DX cosH −DY sinH) sin δ −DZ cos δ, (290)

which satisfies an equation of another ellipse:

u2 +
(v +DZ cos δ)2

sin2 δ
= D2

X +D2
Y , (291)

is also a valid uv–trajectory of the same pair of stations.

When we calculate actual uv–trajectory of a radio source, we must take
into account that the source can be observed by an interferometer baseline
only when the source is “mutually visible” from two stations of the baseline,
i.e. when the source is within lower and upper elevation limits of radio tele-
scopes at the two stations. This condition is roughly formulated as follows.
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Figure 55: Zenith distance z of a radio source direction s at a station in a
direction r. Also shown is an Earth–fixed Cartesian coordinate system with
Z–axis towards the North Pole P and X–axis towards Greenwich Meridian.
H and δ are Greenwich hour angle and declination of the source, respectively.

If X, Y , Z coordinates of a station is R = (RX , RY , RZ), and if we
approximate the Earth by a sphere, then a unit vector r oriented towards
zenith direction of the station is roughly given by

r =
R

R
,

where
R =

√

R2
X +R2

Y +R2
Z .

On the other hand, components of a unit vector s towards a radio source are
given in the X, Y , Z coordinates by

s = (cos δ cosH, − cos δ sinH, sin δ),

(see Figure 55), where H is the Greenwich hour angle, and δ is the declination
of the source.

Therefore, cosine of the zenith distance z, i.e. the angle between the
zenith direction r and the source direction s, is approximately given by

cos z = r · s =
RX cos δ cosH − RY cos δ sinH +RZ sin δ

R
. (292)

Thus, if upper and lower elevation limits of a radio telescope at a station
are Eu and El, respectively, then the radio source is visible with the telescope
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when
sinEu ≤ cos z ≤ sinEl. (293)

Actual uv–trajectories can be calculated in terms of equations (285),
(288), and (290), when the condition of equation (293) is satisfied at both
ends of baselines.

Figure 56: uv–trajectories of a combined KVN and VERA arrays, for a source
at δ = +60◦.

Figure 56 shows an example of the uv–coverage for the combined VERA
and KVN VLBI arrays thus calculated, for a source located at +60◦ declina-
tion.

3.2.2 Synthesized Beams

Let us consider a point source with flux density Sν located at the reference
direction s0 (ξ = 0 and η = 0). In this case, the intensity distribution,
which we call here the “true intensity” and denote as I trueν (ξ, η), in order to
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distinguish it from “synthesized” one to be introduced below, is given by

I trueν (ξ, η) = Sν δ(ξ) δ(η), (294)

where δ(x) is the delta function.
For simplicity, we assume that the normalized power pattern of the inter-

ferometer is unity, i.e. AN(ξ, η) = 1, everywhere in our range of mapping.
Then, equation (283) gives the complex visibility which is constant at every
uλ, vλ point:

V(uλ, vλ) = Sν = const. (295)

In an actual interferometer array, we can sample the complex visibility
only along uv–trajectories. Therefore, the “synthesized intensity distribu-
tion” calculated by equation (284):

Isyntν (ξ, η) = Sν

∞
∫

−∞

∞
∫

−∞

ei2π(uλξ+vλη)du dv
∣

∣

∣

along uv
, (296)

does not reproduce the point but yields some extended distribution. This
“response of a synthesis interferometer array to a point source” is called the
“synthesized beam” or the “dirty beam” of the array. This is analogous
to the beam formation of a single dish antenna with a strange “aperture
illumination” along elliptical arcs.

If we approximate the two–dimensional integration by a summation on
meshes, equation (296) is reduced to

Isyntν (ξ, η) = Sν

∑

u

∑

v

ei2π(uλξ+vλη)∆uλ ∆vλ
∣

∣

∣

along uv

= Sν

∑

u

∑

v

[ei2π(uλξ+vλη) + e−i2π(uλξ+vλη)]∆uλ ∆vλ
∣

∣

∣

along uv1

= 2Sν

∑

u

∑

v

cos(2π[uλξ + vλη])∆uλ ∆vλ
∣

∣

∣

along uv1
, (297)

where “along uv” means summation along uv–trajectories composed of point–
symmetric elliptical arcs given in both equations (289) and (291), whereas
“along uv1” means summation along uv–trajectories given by equation (289)
only. We can further replace the two–dimensional summation on the uv–
plane by a one–dimensional summation along the elliptical uv–trajectories
with equal intervals of Greenwich hour angle ∆H. Since an interval in Green-
wich hour angle ∆H corresponds to a length interval in the uv–plane

√

√

√

√

(

duλ
dH

)2

+

(

dvλ
dH

)2

∆H,
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we obtain from equation (297)

Isyntν (ξ, η) ∝
∑

H

cos(2π[uλ(H)ξ+vλ(H)η])

√

√

√

√

(

duλ
dH

)2

+

(

dvλ
dH

)2

∆H
∣

∣

∣

along uv1
.

(298)

Synthesized Beam of KVN+VERA 
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Figure 57: Normalized synthesized beam of the combined KVN and VERA
VLBI arrays for a radio source at +60◦ declination with observing frequency
22 GHz.

uλ, vλ and their derivatives with respect toH in equation (298) are readily
calculated for a radio source with declination δ from equations (285) and
(288), namely we have

uλ =
DX sinH +DY cosH

λ
, (299)

vλ = −DX cosH −DY sinH

λ
sin δ +

DZ

λ
cos δ, (300)

and
duλ
dH

=
DX cosH −DY sinH

λ
, (301)

dvλ
dH

=
DX sinH +DY cosH

λ
sin δ. (302)
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Calculating these quantities with varying H while the source is mutually
visible at two ends of baselines, inserting them into equation (298), and
dividing the results by a maximum value, we obtain the synthesized beam
normalized by its maximum value:

Isyntν (ξ, η)

Isyntν max

.

Figure 57 shows an example of the normalized synthesized beam for the
combined KVN and VERA VLBI arrays for a radio source located at +60◦

declination observed at 22 GHz.

3.3 Correlated Flux Density of a Source with Gaussian

Intensity (Brightness) Distribution

How is the correlated flux density related to the size of an observed radio
source? Let us consider this problem for a simple case, when the source has
a circular Gaussian intensity (brightness) distribution (Figure 58):

Iν(ξ, η) =
STν

πΘ2
s

e
− ξ2+η2

Θ2
s , (303)

where STν
is the total flux density (note that

∞
∫

−∞

∞
∫

−∞

e
− ξ2+η2

Θ2
s dξ dη = πΘ2

s ),

Iν(ρ)

ρ

Θ0

Figure 58: Circular Gaussian intensity distribution Iν(ρ) with ρ =
√
ξ2 + η2.

and Θs is a parameter characterizing the source size. This parameter Θs is
related to the half–power width of the Gaussian distribution Θ0 by a formula:

Θs =
Θ0

2
√

ln 2
∼= 0.60Θ0. (304)
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Then, in view of equation (283), the complex visibility of the source is
given by

V(uλ, vλ) =
STν

πΘ2
s

∞
∫

−∞

∞
∫

−∞

e
− ξ2 + η2

Θ2
s e−i2π(uλ ξ+vλ η) dξ dη

= STν
e−π

2 Θ2
s (u2

λ
+ v2

λ
) = STν

e−[πΘs (D cos θ
λ )]

2

(305)

(see Figure 59 for geometry of the projected baseline), where we took AN(ξ, η) ∼=
1, for simplicity, assuming that the source is observed at beam centers of an-
tennas. In deriving equation (305), we used an integration formula:

∞
∫

−∞

e−x
2 − i a x dx =

√
π e−

a2

4 .

s0

D

uλ

vλ

θ

D cos θ
λ

Figure 59: Projected baseline length:
√

u2
λ + v2

λ = D cos θ
λ

.

Thus, for a source with the circular Gaussian intensity distribution, we
have

• correlated flux density = | V(uλ, vλ) | = STν
e−[πΘs (D cos θ

λ )]
2

,
• visibility phase = 0.
This means that the correlated flux density | V(uλ, vλ | is reduced to the

half of the total flux density STν
when

[

πΘs(
D cos θ

λ
)

]2

= ln 2, (306)
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or, in view of equation (304), when the half–power width of the source dis-
tribution Θ0 is equal to

Θ0 =
2 ln 2

π

λ

D cos θ
∼= 0.44

λ

D cos θ
. (307)

correlated flux correlated flux

0 0

STν STν

Θ0 D cos θ / λ

Θ0D cos θ

curve for given baseline curve for given source size

point source

0.44 λ/Dcosθ 0.44 /Θ0

Figure 60: Correlated flux density of a source with Gaussian intensity dis-
tribution, as a function of the source size (left), and as a function of the
projected baseline length (right).

Figure 60 shows the correlated flux density of the source, with a circular
Gaussian intensity distribution, as a function of the half–power width Θ0 of
the source brightness distribution, assuming a fixed baseline length D (left
panel); and as a function of the projected baseline length normalized by the
wave length, D cos θ/λ, assuming a fixed source size (right panel), according
to equation (305). This simple example shows that the source appears weak
to an interferometer, or “resolved out”, when its size becomes comparable
with or larger than the fringe spacing λ/(D cos θ). In other words, inter-
ferometers are sensitive to the sources with angular sizes comparable to or
smaller than their fringe spacings.

It is usual practice in VLBI to infer the size of a source by measuring its
correlated flux densities at different projected baseline lengths, and fitting
the results to a Gaussian model, as shown in the right panel of Figure 60.
Figure 61 shows an example (Wajima and Iguchi, private communication in
2005).
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Figure 61: Visibility amplitude (top) and phase (bottom) versus uv–distance
along a position angle (PA) 60◦ plot of a quasar 3C279 observed with VLBA
at 15 GHz (Wajima and Iguchi, private communication in 2005). Visibility
amplitude (top) decreases with uv–distance (projected baseline length) in a
range from 0 to 70×106 λ, similarly to the curve in the right panel of Figure
60. However, visibility amplitude becomes almost flat in uv–distance range
from 70 × 106 to 400 × 106 λ, showing existence of a compact component
which is not resolved even on the longest baseline 400 × 106 λ ' 8000 km.
This Figure can be compared with an image map of the same source shown
in Figure 52.
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Figure 62: VLBI can observe very bright, compact objects only.

3.4 What Can VLBI Observe?

The above discussions show that a VLBI (or an interferometer, in general),
with baseline length D and observing wavelength λ, can detect only compact
sources with characteristic angular diameters Θ0 comparable to or smaller
than λ/D, i.e.,

Θ0 ≤
λ

D
.

If the brightness temperature of a source is TB, then the intensity Iν and
the flux density Sν are given by:

Iν =
2kTB
λ2

, and Sν =
2kTB
λ2

πΘ2
0

4
≤ πkTB

2D2
,

where k = 1.381× 10−23 JK−1 is the Boltzmann constant. Note that the last
expression does not depend on the wavelength.

Now, if the minimum detectable flux density by VLBI is Sνmin, we can
impose a lower limit to the brightness temperature, TBmin, for the detectable
source:

TBmin ∼= 2D2

πk
Sνmin. (308)

If D = 2300 km and Sνmin = 0.02 Jy, then TBmin ∼= 5 × 107 K (!).
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Such a high lower limit of the brightness temperature precludes detection
of almost all thermal sources, such as stars and molecular clouds with VLBI,
leaving only very bright, compact non–thermal sources, e.g., AGNs, masers,
and pulsars (see Figure 62), to be detected.

4 Signal–to–Noise Ratio in Radio Interfer-

ometry

So far, we approximated the result R of the multiplication and integration
in a correlator by the cross–correlation RU1U2(0) of the voltage signals U1(t)
and U2(t) at input points of the correlator. In view of the ergodicity, this
approximation should be good enough when the integration time is suffi-
ciently long. Also, one can prove that the mathematical expectation of R is
equal to RU1U2(0), if U1(t) and U2(t) are jointly stationary random processes.
However, the actual correlator output, with some limited integration time, is
inevitably accompanied with thermal noise fluctuations. Therefore, we have
some finite signal–to–noise–ratio in the correlator output, which determines
detectability of the radio source signal, i.e. the sensitivity (Figure 63).

t

t

signal

signal

Figure 63: Signal–to–noise ratio of the correlator output determines the sen-
sitivity of an interferometer.

We will see in the followings that a statistical theory of the dispersion of
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the time–averaged product of random processes gives a theoretical expression
for the signal–to–noise ratio S/N of the correlator output.

4.1 Statistical Model of a Correlator Output

4.1.1 Signal + Noise Inputs to a Correlator

Let us consider that the voltages from two antennas U1(t) and U2(t), which
are fed to input points of a correlator, consist of signals V1(t), V2(t) and

multiplier

integrator

from antenna 1 from antenna 2

.

U2=V2+N2U1=V1+N1

RV1V2 + Noise

Figure 64: Input voltages to a correlator consist of signals and noises.

noises N1(t), N2(t) (see Figure 64):

U1(t) = V1(t) +N1(t),

U2(t) = U2(t) +N2(t). (309)

We assume that the delay tracking and fringe stopping were already success-
fully applied to the voltages U1(t) and U2(t), so that we can integrade the
multiplier output for an appropriate interval of time without losing signal
power.

4.1.2 Integration of the Multiplier Output

If we denote an instantaneous output of the multiplier as y(t):

y(t) = U1(t)U2(t), (310)

an output of the integrator (i.e., correlator output) z(t) is related to the input
y(t) by a linear system of time averaging with an impulse response a(t):

z(t) = y(t) ∗ a(t) =

∞
∫

−∞

y(t′)a(t− t′) dt′, (311)
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where symbol ‘∗’ stands for a convolution, as before.
If an input y(t) is a constant y in time, the time averaging result must be

equal to the constant y. Therefore, the impulse response a(t) must satisfy:

∞
∫

−∞

a(t) dt = 1. (312)

For example, if we take a simple running mean:

z(t) =
1

2T

t+T
∫

t−T

y(t′) dt′, (313)

then the impulse response a(t) is given by

a(t) =











1
2T

for − T ≤ t ≤ T,

0 otherwise.

4.1.3 Statistical Expectation of the Correlator Output

We assume that the noise components from two antennas are not correlated
with each other, and are not correlated with signal components, either. Then,
we have

〈N1(t)N2(t)〉 = 0, 〈Vi(t)Nj(t)〉 = 0 for i = 1, 2 and j = 1, 2, (314)

where 〈 〉 stands for the ensemble average, as before. From equation (314),
we obtain

〈y(t)〉 = 〈U1 U2〉 = 〈[V1(t) +N1(t)] [V2(t) +N2(t)]〉 = 〈V1(t)V2(t)〉. (315)

In next subsection, we will see that the multiplier output y(t) = U1(t)U2(t)
is a stationary random process, provided that U1(t) and U2(t) are jointly sta-
tionary random processes obeying the zero–mean jointly normal (or Gaus-
sian) probability density. If so,

〈y(t)〉 = const,

and, therefore,

〈z(t)〉 =

∞
∫

−∞

〈y(t′)〉a(t− t′) dt′ = 〈y(t)〉
∞
∫

−∞

a(t− t′)dt′ = 〈y(t)〉, (316)

in view of equation (312). Equations (315) and (316) show that the statistical
expectation of the correlator output in radio interferometry does not contain
system–noise contribution unlike in the single–dish radio telescope case.
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4.1.4 Dispersion of the Correlator Output

As we saw in the discussion of the correlation ergodicity in Subsection 1.2.4,
a correlator output z(t) with finite integration time should be associated with
noise–induced fluctuations around the expectation:

z(t) = 〈z(t)〉 + noise = 〈V1(t)V2(t)〉 + noise. (317)

This fluctuation determines detection limit of radio sources as illustrated in
Figure 64.

The magnitude of this fluctuation can be estimated by the dispersion σ2
z

of the correlator output z(t), as we saw in the discussion of the correlation
ergotic processes. The dispersion is given by

σ2
z = 〈[z(t) − 〈z(t)〉]2〉

= 〈[z2(t) − 2z(t) 〈z(t)〉 + 〈z(t)〉2]〉
= 〈z2(t)〉 − 〈z(t)〉2, (318)

and, therefore, the standard deviation is given by

σz =
√

〈z2(t)〉 − 〈z(t)〉2. (319)

This is a measure of strength of the noise in the correlator output.
On the other hand, strength of the signal in the correlator output is given

by the theoretical expressions of the fringe amplitude AU and AL shown in
equations (260) and (261) for USB and LSB receptions, respectively, for a
continuum spectrum source.

Therefore, signal–to–noise ratio SNR for a continuum spectrum source
is given by

SNR =
A
σz
, (320)

where A is either AU or AL, depending on a choice of the single sideband
actually received.

In following subsections, we will calculate the standard deviation of the
correlator output σz, in order to get an explicit expression of the signal–to–
noise ratio in terms of physical parameters characterizing the radio source
and antenna–receiving systems.

4.2 Useful Formulae Related to the Correlator Output

In calculating the standard deviation of the correlator output σz, we will use
following formulae relevant to the present problem.
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4.2.1 Fourth Order Moment Relation

Let x1, x2, · · ·, xn are zero–mean random variables obeying to the jointly
normal (or Gaussian) probability density given in equation (29):

f(x1, · · · , xn) =
1

√

(2π)n∆
e
− 1

2

n
∑

i=1

n
∑

j=1

xi C
−1
ij

xj

, (321)

where expectation ηi of the random variable xi figuring in equation (29) is
zero by assumption for all i = 1, 2, · · · , n; Cij ≡ 〈xi xj〉 is a covariance matrix,
C−1
ij is its inverse matrix, and ∆ ≡ det{Cij} is its determinant. In general,

we denote an inverse matrix by a symbol ( )−1 and a determinant by det ( ).
A very useful formula is known for such jointly normal random variables

xi (i = 1, · · · , n):

〈xi xj xk xl〉 = 〈xi xj〉 〈xk xl〉 + 〈xi xk〉 〈xj xl〉 + 〈xi xl〉 〈xj xk〉, (322)

which says that a fourth order statistical moment (a term “n–th order sta-
tistical moment” is used here to denote a statistical expectation of a product
of n random variables) 〈xi xj xk xl〉 is decomposed as a sum of products of
second order statistical moment (correlations) 〈xi xj〉.

Proof :

1. Let us reformulate equation (321), using matrix notation of a row vector
X and its transpose XT :

X =



















x1

x2

...

xn



















, and XT = (x1 x2 · · · xn),

where ( )T denotes a transpose matrix. Then we have

f(X) =
1

√

(2π)n∆
e−

1
2
XT C−1X , (323)

where C is the covariance matrix which is a positive–definite symmetric
matrix with Cij = 〈xi xj〉 as ij–element.
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2. Fourier transform of a probability density is called “characteristic func-
tion”. A characteristic function F (Ω) of the joint probability density
f(X) in equation (323), where Ω is a row vector of angular frequencies
ΩT = (ω1 ω2 · · · ωn), is given by

F (Ω) =

∞
∫

−∞

· · ·
∞
∫

−∞

f(X) e−iΩ
T X dx1 · · · dxn = 〈e−iΩT X〉

=
1

√

(2π)n∆

∞
∫

−∞

· · ·
∞
∫

−∞

e−
1
2
XT C−1 X − iΩT X dx1 · · · dxn.

(324)

3. According to the linear algebra, a symmetric matrix can be diagonal-
ized by a suitable orthogonal transformation. So, let T be an orthogonal
matrix, which diagonalizes the symmetric matrix C−1:

T T C−1 T =



















λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn



















, (325)

where λ1, λ2, · · · , λn are eigen values of the matrix C−1.

Since T is an orthogonal matrix, by definition we have

T T T = T T T = I, T−1 = T T , det T = 1, (326)

where I is a unit matrix:

I =



















1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1



















,

and, therefore,

T T C T = (T T C−1 T )−1 =



















λ−1
1 0 · · · 0

0 λ−1
2 · · · 0

...
...

. . .
...

0 0 · · · λ−1
n



















, (327)
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and

∆ = det C = det T T det C det T = det(T T C T ) =
1

λ1 λ2 · · · λn
.

(328)

4. If we introduce a new row vector Y :

Y T = (y1 y2 · · · yn),

which is obtained by an orthogonal transformation of X with T :

Y = T T X,

then we have

X = T Y,
∂xi
∂yj

= Tij,
∂(x1 x2 · · · xn)
∂(y1 y2 · · · yn)

= det T = 1,

XT C−1X = Y T T T C−1 T Y =
n
∑

j=1

λj y
2
j ,

ΩT X = ΩT T Y =
n
∑

i=1

n
∑

j=1

ωi Tij yj. (329)

Therefore, the characteristic function F (Ω) given in equation (324) is
reduced to

F (Ω) =
1

√

(2π)n∆

∞
∫

−∞

· · ·
∞
∫

−∞

e

−1

2

n
∑

j=1

λj y
2
j − i

n
∑

i=1

n
∑

j=1

ωi Tij yj
dy1 · · · dyn.

(330)
If we further introduce new variables:

zj =

√

λj
2
yj (j = 1, · · · , n),

then we have

F (Ω) =
1

√

(2π)n∆

∞
∫

−∞

· · ·
∞
∫

−∞

e

−
n
∑

j=1

(z2
j + i

n
∑

i=1

ωi Tij

√

2

λj
zj)√ 2n

λ1 · · ·λn
dz1 · · · dzn,

=
1√
πn

∞
∫

−∞

· · ·
∞
∫

−∞

e

−
n
∑

j=1

(z2
j + i

n
∑

i=1

ωi Tij

√

2

λj
zj)

dz1 · · · dzn.

(331)
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5. Applying the integration formula:
∞
∫

−∞

e−x
2 − i a x dx =

√
π e−

a2

4 ,

we reduce equation (331) to

F (Ω) = e

−1

4

n
∑

j=1

(

n
∑

i=1

ωi Tij

√

2

λj

)2

= e

−1

2

n
∑

i=1

n
∑

j=1

n
∑

k=1

ωi Tij
1

λj
Tkj ωk

= e−
1
2

ΩT C Ω. (332)

6. From equations (324) and (332), we have

〈e−iΩT X〉 = e−
1
2

ΩT C Ω. (333)

Expanding exponential functions in both sides of this equation into the
Taylor series, we have

〈e−iΩT X〉 = 1 − 1

2!
〈(ΩT X)2〉 + i

1

3!
〈(ΩT X)3〉 +

1

4!
〈(ΩT X)4〉 − · · · ,

e−
1
2

ΩT C Ω = 1 − 1

2
ΩT C Ω +

1

2!
(
1

2
ΩT C Ω)2 − · · · . (334)

Terms with fourth order of ωi ’s in the above equations are

1

4!
〈(ΩT X)4〉 =

1

4!

n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

〈xi xj xk xl〉ωi ωj ωk ωl, (335)

and

1

2!
(
1

2
ΩT C Ω)2 =

1

2!

1

4

n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

Cij Ckl ωi ωj ωk ωl

=
1

4!

n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

(Cij Ckl + Cik Cjl + Cil Cjk)ωi ωj ωk ωl, (336)

respectively. Right hand sides of equations (335) and (336) are equal
to each other in view of equation (333). Consequently, coefficients of
ωi ωj ωk ωl in these equations, i.e., 〈xi xj xk xl〉 and Cij Ckl + Cik Cjl +
Cil Cjk, must be equal to each other, too, since both of them are in-
variant in any substitution of i, j, k, l. Thus, we have

〈xi xj xk xl〉 = Cij Ckl + Cik Cjl + Cil Cjk. (337)

Since Cij = 〈xi xj〉, this completes the proof of equation (322).

154



4.2.2 Multiplier Output as a Stationary Random Process

If two voltage inputs U1(t) and U2(t) of a correlator are jointly station-
ary processes and if they obey the zero–mean jointly normal (or Gaus-
sian) probability density such as given in equation (321), then their product
y(t) = U1(t)U2(t) is also a stationary random process.

Proof :

1. Expectation of y(t) is a constant in time. In fact,

〈y(t)〉 = 〈U1(t)U2(t)〉 = RU1U2(0), (338)

where RU1U2(τ) = 〈U1(t)U2(t − τ)〉 is a cross–correlation of jointly
stationary random processes U1(t) and U2(t), and, therefore, 〈y(t)〉 does
not depend on time t.

2. Autocorrelation of y(t) is a function of time difference only. In fact, in
view of equation (322), we have

〈y(t) y(t− τ)〉 = 〈U1(t)U2(t)U1(t− τ)U2(t− τ)〉
= 〈U1(t)U2(t)〉 〈U1(t− τ)U2(t− τ)〉
+〈U1(t)U1(t− τ)〉 〈U2(t)U2(t− τ)〉
+〈U1(t)U2(t− τ)〉 〈U2(t)U1(t− τ)〉

= R2
U1U2

(0) +RU1U1(τ)RU2U2(τ) +RU1U2(τ)RU1U2(−τ),
(339)

where RU1U1(τ) = 〈U1(t)U1(t − τ)〉 and RU2U2(τ) = 〈U2(t)U2(t − τ)〉
are autocorrelations of input voltages U1(t) and U2(t). This equation
shows that 〈y(t) y(t− τ)〉 is a function of time difference τ only.

Thus, we proved that the multiplier output y(t) is a stationary random pro-
cess.

Since the integrator output (i.e., correlator output) z(t) is an output of a
linear system of time averaging, given in equation (311), with the input y(t)
which was shown to be a stationary random process, we conclude that z(t)
is also a stationary random process.

Hereafter, we will denote autocorrelations of the multiplier output y(t)
and the integrator output z(t) as functions of time difference τ :

Ryy(τ) = 〈y(t) y(t− τ)〉,
Rzz(τ) = 〈z(t) z(t− τ)〉. (340)
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4.2.3 Time Averaging Operator

Since the multiplier output y(t) and the integrator output z(t) are related
to each other through the impulse response a(t) of the operator of time
averaging, as shown in equation (311):

z(t) = y(t) ∗ a(t),
their autocorrelations are related to each other as:

Rzz(τ) = Ryy(τ) ∗ a(τ) ∗ a(−τ), (341)

in view of equation (42).
Therefore, if we denote power spectra of y(t) and z(t) as Syy(ω) and

Szz(ω):

Syy(ω) ⇔ Ryy(τ),

Szz(ω) ⇔ Rzz(τ),

where symbol ⇔ stands for a Fourier transformation pair, and introduce a
system function A(ω) of a(t):

A(ω) ⇔ a(t),

then we have, in view of equation (72),

Szz(ω) = Syy(ω) | A(ω) |2 . (342)

Since

A(ω) =

∞
∫

−∞

a(t) e−iωtdt,

and, from equation (312),
∞
∫

−∞

a(t) dt = 1,

the system function A(ω) must always satisfy an equation:

A(0) = 1. (343)

Note that, for the case of a simple running mean, the system function
takes the sinc function form:

A(ω) =
1

2T

T
∫

−T

e−iωtdt =
sin(ωT )

ω T
. (344)

In general, A(ω) can be regarded as a low–pass filter with a narrow pass-
band of about ±2π/T , as evident from the above simple case. If the integral
time T is 1 s, for example, the passband is as narrow as ±1 Hz.
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4.2.4 Power Spectrum of Multiplier Output

Let us now describe the power spectrum of the multiplier output Syy(ω)
through power and cross–power spectra of voltages, which are the inputs to
our correlator.

From equations (339) and (340), we have

Ryy(τ) = R2
U1U2

(0) +RU1U1(τ)RU2U2(τ) +RU1U2(τ)RU1U2(−τ). (345)

Therefore, Fourier transformation of this equation gives us the power spec-
trum Syy(ω). Using convolution theorem in Fourier transformation, given in
equation (67), for products of functions of τ , we obtain

Syy(ω) =

∞
∫

−∞

Ryy(τ)e
−iωτdτ

= 2πR2
U1U2

(0) δ(ω)

+
1

2π
SU1U1(ω) ∗ SU2U2(ω) +

1

2π
SU1U2(ω) ∗ S∗

U1U2
(ω), (346)

where δ(ω) is the delta function of angular frequency ω, and SU1U1(ω),
SU2U2(ω), and SU1U2(ω) are power and cross–power spectra of input voltages:

SU1U1(ω) ⇔ RU1U1(τ),

SU2U2(ω) ⇔ RU2U2(τ),

SU1U2(ω) ⇔ RU1U2(τ).

Here we used a relation:

∞
∫

−∞

e−iωτdτ = 2πδ(ω),

which was given in equation (65), and for Fourier transform of a real function
RU1U2(−τ):

∞
∫

−∞

RU1U2(−τ)e−iωτdτ =

∞
∫

−∞

RU1U2(τ)e
iωτdτ

=





∞
∫

−∞

RU1U2(τ)e
−iωτdτ





∗

= S∗
U1U2

(ω).
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4.2.5 Power and Cross–Power Spectra of Input Voltages

Power and cross–power spectra of input voltages figuring in equation (346)
can be described as follows.

Assuming, as before, that signal and noise are not correlated with each
other, and noises from different antennas are not correlated, either, we ex-
press autocorrelations and cross–correlation of input voltages U1(t) and U2(t)
in terms of signal (V ) and noise (N) components:

RU1U1(τ) = RV1V1(τ) +RN1N1(τ),

RU2U2(τ) = RV2V2(τ) +RN2N2(τ),

RU1U2(τ) = RV1V2(τ), (347)

where

RV1V1(τ) = 〈V1(t)V1(t− τ)〉,
RV2V2(τ) = 〈V2(t)V2(t− τ)〉,
RV1V2(τ) = 〈V1(t)V2(t− τ)〉,

are auto– and cross–correlations of signal voltages V1(t) and V2(t), while

RN1N1(τ) = 〈N1(t)N1(t− τ)〉,
RN2N2(τ) = 〈N2(t)N2(t− τ)〉,

are autocorrelations of noise voltages N1(t) and N2(t).
Therefore, the power and cross–power spectra are obtained by Fourier

transformation of equations (347) as

SU1U1(ω) = SV1V1(ω) + SN1N1(ω),

SU2U2(ω) = SV2V2(ω) + SN2N2(ω),

SU1U2(ω) = SV1V2(ω), (348)

where

SV1V1(ω) ⇔ RV1V1(τ),

SV2V2(ω) ⇔ RV2V2(τ),

SV1V2(ω) ⇔ RV1V2(τ),

are power and cross–power spectra of signal voltages, while

SN1N1(ω) ⇔ RN1N1(τ),

SN2N2(ω) ⇔ RN2N2(τ),

are power spectra of noise voltages.
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4.2.6 Antenna Temperature and System Noise Temperature

We saw in equation (169), that a power spectrum Svivi
(ω) of a received signal

voltage vi(t) (i = 1, 2) at RF band, which is just received by i–th antenna,
and has not yet gone through a receiving system, is given in terms of effective
flux density Sν of an observed source and efective aperture of i–th antenna
Aei

by

Svivi
(ω) =

1

4
Aei

Sν (i = 1, 2).

Since the effective flux density and the antenna temperature TAi
(ω), char-

acterizing a received power from a radio source per unit bandwidth, are re-
lated to each other by an equation:

k TAi
(ω) =

1

2
Aei

Sν,

as we saw in Chapter 2, where k = 1.381 × 10−23 JK−1 is Boltzmann’s con-
stant, the power spectrum of the received signal voltage is described through
the antenna temperature as:

Svivi
(ω) =

1

2
k TAi

(ω) (i = 1, 2). (349)

Since the frequency conversion preserves the power spectrum of the re-
ceived signal voltage, we can easily derive from equation (349) a power spec-
trum SViVi

(ω) of an IF signal voltage Vi(t) at an input of a correlator. Indeed,
if we denote the system function of the receiving system as Hi(ω), as given
in equation (195), and if we assume for definiteness upper sideband (USB)
reception, we have

SViVi
(ω) =

1

2
k TAi

(ωLO + ω) | Hi(ω) |2 (for ω ≥ 0, i = 1, 2), (350)

where ω is frequency in IF band and ωLO is local oscillator frequency of the
frquency conversion. Here we showed only positive frequency side of the
power spectrum, which is an essentially even function of frequency.

On the other hand, the noise component is described through the in-
put equivalent system noise temperature TSi

(ω), which is supposed to pass
through the same receiving system as the radio source signal does. Thus, in
the USB reception and in the positive frequency range, we have

SNiNi
(ω) =

1

2
k TSi

(ωLO + ω) | Hi(ω) |2 (for ω ≥ 0, i = 1, 2). (351)
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Therefore, from equations (348), (350), and (351), the power spectrum of
the input voltage Ui(t) is given by

SUiUi
(ω) =

1

2
k [TAi

(ωLO+ω)+TSi
(ωLO+ω)] | Hi(ω) |2 (for ω ≥ 0, i = 1, 2),

(352)
in the USB reception and in the positive frequency range.

The cross–power spectrum of two input signal voltages Vi(t), (i = 1, 2) af-
ter delay tracking and fringe stopping is given in equation (242), for the case
of the USB reception and in the positive frequency range of the Hermitian
symmetric cross–power spectrum. Therefore, taking into account also equa-
tion (348), the cross–power spectrum of the input voltages Ui(t), (i = 1, 2)
in the positive frequency range (ω ≥ 0) is given by

SU1U2(ω) = SV1V2(ω) =
1

4
A0 e

−i(φLO1−φLO2) V(ωLO + ω)H1(ω)H∗
2(ω), (353)

where A0 is geometric mean of effective apertures of antennas, φLO1−φLO2 is
difference of initial phases of local oscillators, and we put ∆τg = 0 in equation
(242), assuming complete delay tracking and fringe stopping.

In a simple case of a point–like radio source with normalized power
pattern of the interferometer AN (σ) = 1 at centers of antenna beams,
the complex visibility of the source is real and equal to its flux density,
V(ωLO + ω) = Sν, as given in equation (295), and, therefore,

1

4
A0 V(ωLO + ω) =

1

4

√

Ae1Ae2 Sν =
1

2
k
√

TA1(ωLO + ω)TA2(ωLO + ω).

(354)
In this case, we have, in ω ≥ 0

SU1U2(ω) =
1

2
k
√

TA1(ωLO + ω)TA2(ωLO + ω) e−i(φLO1−φLO2) H1(ω)H∗
2(ω).

(355)

4.3 Sensitibity of a Radio Interferometer

4.3.1 Standard Deviation Due to the Noise

Now we are ready to calculate the standard deviation σz of the correlator
output z(t) in equation (319), and then the signal–to–noise ratio in equation
(320).

In equation (319):

σz =
√

〈z2(t)〉 − 〈z(t)〉2,
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the first term 〈z2(t)〉 in square root is given by inverse Fourier transformation
at τ = 0 of the power spectrum Szz(ω), which is related to Syy(ω) given in
equation (346) through equation (342). Therefore, we have

〈z2(t)〉 =
1

2π

∞
∫

−∞

Szz(ω) dω =
1

2π

∞
∫

−∞

Syy(ω) | A(ω) |2 dω

=
1

2π

∞
∫

−∞

[

2πR2
U1U2

(0) δ(ω)

+
1

2π
SU1U1(ω) ∗ SU2U2(ω) +

1

2π
SU1U2(ω) ∗ S∗

U1U2
(ω)

]

| A(ω) |2 dω
= R2

U1U2
(0)

+
1

(2π)2

∞
∫

−∞

[

SU1U1(ω) ∗ SU2U2(ω) + SU1U2(ω) ∗ S∗
U1U2

(ω)
]

| A(ω) |2 dω,

(356)

where A(ω) is the system function of time averaging, and we used equation
(343) for deriving the first term. On the other hand, second term 〈z(t)〉2 is
equal to R2

U1U2
(0), since, in view of equations (317) and (338), we have

〈z(t)〉 = RU1U2(0).

Therefore, the first term of the right hand side of equation (356) is compen-
sated by 〈z(t)〉2, and hence we have

σ2
z =

1

(2π)2

∞
∫

−∞

[

SU1U1(ω) ∗ SU2U2(ω) + SU1U2(ω) ∗ S∗
U1U2

(ω)
]

| A(ω) |2 dω.

(357)
If we use explicit forms of convolution integrals, equation (357) is reduced to

σ2
z =

1

(2π)2

∞
∫

−∞

∞
∫

−∞

[SU1U1(ω − ω′)SU2U2(ω
′)

+SU1U2(ω − ω′)S∗
U1U2

(ω′)
]

| A(ω) |2 dω′ dω. (358)

Since A(ω) is a very narrow–band low–pass filter around ω = 0, as we
saw earlier, SU1U1(ω−ω′) and SU1U2(ω−ω′) can be replaced by SU1U1(−ω′) =
SU1U1(ω

′) and SU1U2(−ω′) = S∗
U1U2

(ω′), and we can take them out of the
integration with respect to ω. Thus we obtain,

σ2
z =

1

(2π)2

∞
∫

−∞

[

SU1U1(ω
′)SU2U2(ω

′) + S∗
U1U2

(ω′)S∗
U1U2

(ω′)
]

dω′

∞
∫

−∞

| A(ω) |2 dω.

(359)
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Taking into account that SU1U1(ω
′) is an even, and SU1U2(ω

′) is a Hermitian
symmetric, functions, we can further reduce equation (359) to

σ2
z =

1

2π2

∞
∫

0

{SU1U1(ω
′)SU2U2(ω

′)

+< [SU1U2(ω
′)SU1U2(ω

′)]} dω′

∞
∫

−∞

| A(ω) |2 dω. (360)

Now, assuming the USB reception, for definiteness, we apply equations
(352) and (355) for spectra in positive frequency range (ω ≥ 0) of input
voltages to obtain

σ2
z =

k2

8π2

∞
∫

0

{

(TA1 + TS1) (TA2 + TS2) | H1(ω
′) |2| H2(ω

′) |2

+< [(TA1 TA2) e
−2i(φLO1

−φLO2
)H1(ω

′)H∗
2(ω

′)H1(ω
′)H∗

2 (ω′)]
}

dω′

×
∞
∫

−∞

| A(ω) |2 dω, (361)

where we omitted argument ωLO + ω in TAi
and TSi

(i = 1, 2) for simplicity.
Since, in actual observations of most of radio sources, antenna tempera-

tures are much smaller than system noise temperatures: TAi
� TSi

(i = 1, 2),
we ignore terms with TAi

, compared with terms with TSi
(i = 1, 2). Then,

assuming a flat noise spectrum, we obtain an equation:

σ2
z =

k2 TS1 TS2

8π2

∞
∫

0

| H1(ω
′) |2 | H2(ω

′) |2 dω′

∞
∫

−∞

| A(ω) |2 dω, (362)

which describes the dispersion of noise fluctuations in the correlator output.

4.3.2 Signal in the Correlator Output

Now, if we assume a continuum spectrum source and USB reception, the
signal in the correlator output is given by the theoretical expression of the
fringe amplitude A in equation (260):

A = A0 | V | | B12 |,

where A0 is the geometric mean of effective apertures of element antennas,
| V | is the visibility amplitude, and | B12 | is the amplitude of the bandwidth
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pattern defined in equation (254). In the simple case of the point–like source,
for which the visibility V is equal to the flux density Sν, we have

A0 | V |=
√

Ae1 Ae2 Sν = 2 k
√

TA1 TA2 ,

and, therefore,

A = 2 k
√

TA1 TA2 | B12 | . (363)

4.3.3 Signal–to–Noise Ratio of the Correlator Output

Consequently, the signal–to–noise ratio is given by

SNR =
A
σz

= 8π

√

TA1 TA2

TS1 TS2

| B12 |
√

2
∞
∫

0
| H1(ω′) |2 | H2(ω′) |2 dω′

1
√

∞
∫

−∞
| A(ω) |2 dω

.

(364)

Let us first assume simple rectangular filters which are given in positive
frequency range (ω ≥ 0) by:

| Hi(ω) |2=











Gi if ωI − ∆ω
2

≤ ω ≤ ωI + ∆ω
2
,

0 otherwise,
(365)

where i = 1, 2, Gi is a gain factor in a receiving system of i—th antenna, ωI
is a center IF frequency of the filter passband, and ∆ω = 2πB is an angular
frequency bandwidth, corresponding to a frequency bandwidth B.

In this case, the coefficient G of the bandwidth pattern given in equation
(262) is equal to G =

√
G1G2. Therefore, the amplitude of the bandwidth

pattern | B12 | is reduced to

B12 =

√
G1G2B

2

sin(πB∆τg)

πB∆τg
=

√
G1G2B

2
(for ∆τg = 0), (366)

where we assumed complete delay tracking and fringe stopping with residual
delay ∆τg = 0. On the other hand, we obviously have

∞
∫

0

| H1(ω
′) |2 | H2(ω

′) |2 dω′ = 2π G1G2B. (367)
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Therefore, we obtain

8π | B12 |
√

2
∞
∫

0
| H1(ω′) |2 | H2(ω′) |2 dω′

=
√

4π B. (368)

For more general case of non–rectangular filters, we will adopt this equa-
tion (368) as a definition of bandwidth B.

On the other hand, if we assume the simple running mean of equation
(313) for the time averaging, then an integration time τa is equal to the
interval of averaging τa = 2T . In this case, equation (344) shows that the
system function of time averaging A(ω) has a simple sinc function form:

A(ω) =
sin(ω T )

ω T
.

Therefore,

∞
∫

−∞

| A(ω) |2 dω =

∞
∫

−∞

sin2(ω T )

ω2 T 2
dω =

π

T
=

2π

τa
,

and, hence, we have
1

√

∞
∫

−∞
| A(ω) |2 dω

=

√

τa
2π
. (369)

For more general case of non–running–mean averaging, we will adopt this
equation (369) as a definition of integration time τa.

Inserting equations (368) and (369) to equation (364), we obtain an equa-
tion for the signal–to–noise ratio SNR in radio interferometry:

SNR =
A
σz

=

√

TA1 TA2

TS1 TS2

√

2B τa. (370)

This equation (370) is very similar to the one for the single dish telescope,
which we mentioned in Chapter 2, except for an extra factor 2 in

√
2Bτa.

The difference comes from the fact that, in case of the single baseline inter-
ferometry, the system noise contributions from 2 antennas are independent,
and, therefore, not correlated, unlike in the single dish telescope case.

4.3.4 Additional Remarks on the SNR Formula

Although we derived equation (370) assuming a point–like and continuum
spectrum source in a case of USB reception, the equation can be applied to
more general cases, if we
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• multiply a ratio of correlated flux density | V | and total flux density

STν
, i.e., | V | /STν

, to
√

TA1 TA2 for an extended source,

• take line width instead of the filter bandwidth for B for a line spectrum
source,

• take LSB values of TAi
and TSi

(i = 1, 2) in LSB reception.

An extra “efficiency factor” ηc, typically ηc ∼= 0.5 ∼ 0.9, is multiplied
to the right hand side of equation (370) in case of digital data processing,
in order to take into account losses associated with digitization and digital
logics, as we will discuss later. Then, the signal–to–noise ratio SNR is usually
given by:

SNR = ηc

√

TA1 TA2

TS1 TS2

√

2B τa. (371)

4.3.5 A Simple Interpretation of the
√
B τa Factor

τa

ω

signal

signal

noise

noise

Figure 65: Schematic diagram explaining how the signal–to–noise ratio of a
stationary signal with a continuum spectrum is improved by increasing the
integration time τa and the bandwidth B, in proportion to

√
B τa.

Figure 65 gives a qualitative explanation why we have a factor
√
B τa

in a formula of signal–to–noise ratio. In fact, we can increase the number
of independent measurements, by increasing the integration time τa and the
bandwidth B for a stationary source with a continuum spectrum, thus im-
proving the signal–to–noise ratio in proportion to

√
τa and

√
B.
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4.3.6 Formulae for SNR and Minimum Detectable Flux Density

If correlated flux density of an observed source is Sν, and effective apertures,
aperture diameters, and aperture efficiencies of antennas are Ae1, Ae2, L1,
L2, and ηA1 , ηA2 , respectively, we can rewrite equation (371) in a form:

SNR = ηc

√

Ae1 Ae2 Sν

2k
√

TS1 TS2

√

2B τa, (372)

or

SNR = ηc
π

8k

√
ηA1 ηA2 L1 L2 Sν
√

TS1 TS2

√

2B τa. (373)

Or, by introducing system equivalent flux densities (SEFDs) of the antennas,

SEFD1 =
2 k TS1

Ae1
, and SEFD2 =

2 k TS2

Ae2
,

we have

SNR = ηc
Sν√

SEFD1 SEFD2

√

2B τa. (374)

For example, if we observe a source with correlated flux density 0.2 Jy,
with antenna diameters of L1 = L2 = 20 m, TS1 = TS2 = 120 K, ηA1 = ηA2 =
0.5, B = 256 MHz, ηc = 0.88, and τa = 100 sec, then we expect to obtain a
signal–to–noise ratio SNR ∼= 19, which is clearly detectable.

On the other hand, if we denote a limiting SNR value, necessary for
detection of a source by an interferometer, as (SNR), we can derive from
equation (373) the minimum correlated flux density Sνmin detectable by the
interferometer:

Sνmin = (SNR)
8k

πηc

√

TS1 TS2√
ηA1 ηA2 L1 L2

√
2B τa

. (375)

For VLBI, SNR ∼ 6 − 7 is usually adopted as the detection threshold. If
we adopt SNR = 7, and assume again L1 = L2 = 20 m, TS1 = TS2 = 120
K, ηA1 = ηA2 = 0.5, B = 256 MHz, ηc = 0.88 and τa = 100 sec, then we
obtain Sνmin = 0.074 Jy. We can observe many radio sources with such a
sensitivity. In particular, almost all extragalactic continuum spectrum radio
sources regularly observed in international geodetic VLBI observations are
readily detected, since their flux densities are mostly Sν > 0.1 Jy.
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