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1 Antenna Overview

According to J.D. Kraus, the antenna is ‘a region between a guided wave
and a free—space wave or vice versa’ and ‘the antenna interfaces electrons on
conductors and photons in space’ (see Figure 1). In addition, he says that
‘the eye is another such device’ (J.D. Kraus, Electromagnetics, 3rd Edition,
1984).
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Figure 1: What is an antenna? (From Kraus, 1984).

1.1 Antennas as Radio Telescopes

In the early history of radio astronomy, a variety of antennas, like dipole
antennas or horn antennas, were used. However, the overwhelming majority
of radio telescopes nowadays adopt the design of the paraboloidal (or, in
exceptional cases, spherical) filled aperture antennas.

Existing radio telescope antennas may be classified into subgroups, ac-
cording to several points of view.

Main reflector design



The rotationally symmetric paraboloidal shape is the most widely used
in designs of main reflectors. The 100 m telescope at Effelsberg, Germany,
is an example (see Figure 2).

Figure 2: Effelsberg 100 m paraboloidal radio telescope, Germany.

The new Greenbank 100 m telescope (GBT), USA, adopts the offset
paraboloidal design in order to achieve maximum efficiency in the reception
of radio waves (see Figure 3).

In several huge radio telescopes in the world, partial paraboloidal surfaces
are used in a cylindrical paraboloid design. The RATAN-600 telescope in
Russia is an example (see Figure 4).

Mounting and tracking design

The most frequently used design for radio telescope mounting is the Alt—
Azimuth design, which has a vertical azimuthal axis, and a horizontal altitude
axis. The Alt—Azimuth mount (or ‘Az—El mount’ as frequently referred to by
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Figure 3: The giant offset paraboloid telescope GBT, USA.

Figure 4: The partial cylindrical paraboloid antenna RATAN-600, Russia.



radio astronomers) is most symmetrical with respect to the direction of grav-
ity, and hence is suited to the stable support of a large and heavy antenna
structure. On the other hand, for tracking the diurnal motion of a radio
source, real-time coordinate transformation from celestial equatorial (right
ascention and declination) coordinates to horizontal (azimuth and elevation)
coordinates, as well as simultaneous driving of the antenna around two axes,
are always required in this mount system. Moreover, it is in general difficult
for an Alt—Azimuth telescope to track sources around the zenith direction.
One of the 20 m antennas of the VERA (VLBI Exploration of Radio As-
trometry) array at Iriki, Japan, is shown as an example of the Alt-Azimuth
radio telescope (left panel in Figure 5).

The most popular mounting design for optical telescopes, the Equatorial
mount, has a polar axis parallel to the rotation axis of the Earth, and a
declination axis. The Equatorial mount is suited for easy tracking of radio
sources in any direction in the sky, and is used for relatively light weight
radio telescopes. The 25 m antennas in the Westerbork Synthesis Radio
Telescope (WSRT, the Netherlands) are examples (right panel in Figure 5).

Figure 5: Alt—Azimuth mount antenna at the VERA Iriki station, Japan
(left), and Equatorial mount antennas in the WSRT, the Netherlands (right).

A very unique design consisting of a fixed spherical main reflector antenna
is used in the giant 305 m radio telescope at Arecibo (Puerto Rico, USA).
Instead of driving the main reflector, a cable subsusbspended subreflector
with special aberration correction optics is driven to track the radio source
(see Figure 6).

Wheel & Track and Yoke & Tower Alt—Azimuth antennas

Figure 7 shows the 20 m VERA antenna, and the 10 m antenna, in NAO
Mizusawa, Japan. The entire structure of the 20 m antenna is supported by
four wheels, which move on a circular rail fixed on the antenna foundation, in



Figure 6: A spherical fixed main reflector antenna at Arecibo, Puerto Rico,
USA, 305 m diameter.



Figure 7: Wheel & Track (left) and Yoke & Tower (right) antennas.

order to change the azimuthal orientation of the antenna. Such an antenna
is called a “wheel & track” antenna. In the 10 m antenna, an azimuth gear
is attached to the top of the tower—like pedestal, and the antenna structure
above the gear is rotated around the azimuth axis by the motor drives. Such
an antenna is called “yoke & tower” antenna. It is generally thought that
the yoke & tower design is best suited to maintain a fixed intersection point
for the Azimuth and Elevation axes — This is an important reference point in
geodetic VLBI. However, for mechanical reasons, the wheel & track design
is more frequently used for large aperture antennas.

Stiffness

For some large aperture millimeter wave telescopes aimed mainly at spec-
troscopy and imaging of radio sources, a flexible structure is adopted to
realize the so—called “homologous transformation”, which is such that the
deformed main reflector surface maintains a paraboloid shape, and forms a
sharp focus, even when the telescope is tilted under the action of the Earth’s
gravity. The 45 m Millimeter-Wave Telescope at Nobeyama, Japan, is a
successful example of such a design (see left panel in Figure 8).



On the other hand, radio telescope antennas for geodetic and astrometric
VLBI observations are usually designed to be very stiff, to eliminate possible
errors due to the deformation of the telescope. The 32 m geodetic VLBI
antenna at Tsukuba, Japan, is an example of the “stiff” telescope (right
panel in Figure 8).

Figure 8: A flexible 45 m Millimeter Wave Telescope at Nobeyama, Japan
(left), and a “stiff” 32 m geodetic VLBI antenna at Tsukuba, Japan (right).

Observing frequency

The most significant factor in antenna design today is the maximum
frequency of observation. Antennas are often called as “cm—wave—", “mm-—
wave— or “submm-wave” antennas, according to their maximum observing
frequency (or shortest observing wavelength). In order to convert wavelength

A to frequency v, one can use a convenient approximate formula:

. 30
v (in GHz) ~ N (nom) (1)
For cm wave antennas, the requirements of surface and pointing accuracy
are not very severe for present day antenna manufacturing technology. It is
therefore relatively easy to make large antennas in the cm wave range. At the
low—frequency end, the main reflectors of cm-wave antennas can be made of
meshed wires. The 25.6 m antenna at Onsala, Sweden, is an example (Figure
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Figure 9: A cm—wave antenna at Onsala, Sweden, 25.6 m diameter.

9). For mm-wave antennas, the surface accuracy must be as small as 0.1 mm
rms, and the pointing accuracy must be as good as 0.001 degree rms. The
large aperture mm-wave antennas like the IRAM 30 m (Spain, EU; left panel
in Figure 10), the Nobeyama 45 m (left panel in Figure 8), and the Effelsberg
100 m (Figure 2) are the result of state-of-the—art achievements of modern
technology. Some of the mm wave telescopes, including the TRAO 14 m
telescope at Daejeon, Korea (see right panel in Figure 10), are covered by
radomes to avoid the effects of strong wind and inhomogeneous solar heating.

The most stringent tolerances in antenna construction are required in
the submm—wave range. As a result, all existing submm—wave antennas are
relatively small (with diameters around 10 m or smaller), and some of them
are located within domes, just like the big optical telescopes. Since the
atmosphere is largely opaque in the submm—wave range at low altitude sites
near sea level, but fairly transparent at dry high altitude sites, submm—wave
telescopes are built on high moutains, with altitudes of 3000-5000 m above
sea level (see Figures 11 and 12).
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Figure 10: IRAM mm-wave telescope, Spain, 30 m diameter (left), and
radome—covered TRAO 14 m mm-wave telescope at Daejeon, Korea (right).

Figure 11: The largest submm—wave antenna JCMT, UK, 15 m diameter, at
Mauna Kea, Hawaii.

12



Figure 12: Main reflector (top) and radome (bottom) of the 1.2 m submm-—
wave telescope at the top of Mount Fuji, Japan.



1.2 Basic Structure of a Paraboloidal Antenna
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Figure 13: Structure of 10 m VLBI antenna at NAO Mizusawa, Japan.

The basic components of the structure of an Alt—Azimuth paraboloidal
antenna are shown in Figure 13. The paraboloidal structure is rotated around
the fixed vertical Azimuth axis, and the horizontal Elevation axis, in order
to point to any direction in the sky. Usually, the main reflector is composed
of a number of panels made of aluminum or carbon fiber, etc, which are fixed
to the back structure by adjustable supports. The feed horn is a kind of
small antenna, and there is a so—called waveguide to coaxial-cable (or
coaxial to waveguide) converter at the neck of the feed horn, where the
electromagnetic field in space generates the voltage in circuits or vice versa.
The waveguide to coaxial cable converter is the only “real antenna” in strict
Kraus’ sense, since this is the device that interfaces ‘electrons on conductors
and photons in space’. The huge structures such as the main reflectors and
subreflectors, can be regarded as mere reflecting devices.
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Figure 14: Primary (left) and secondary (right) foci of paraboloidal antennas.

1.3 Why Paraboloid?

Why are paraboloidal antennas the most frequently used for radio telescopes?
This is because paraboloids collect plane radio waves coming from astro-
nomical sources towards a focal point where we can place the waveguide to
coaxial-cable converter, which transforms the energy of photons in free space
to the energy of electrons in conductors in the most efficient way.

In the secondary focus system shown in the right panel of Figure 14, a
combination of a paraboloidal main reflector and a hyperboloidal subreflector
produces the secondary focus near the main reflector, where the receivers can
be conveniently placed. The path length of a ray from the aperture plane
— shown by dotted horizontal lines in Figure 14 — to the focus is a + b in
the primary focus system, and a + b + ¢ in the secondary focus system; this
length is kept constant for any ray. Therefore, the radio waves are collected
and summed up with equal phases (i.e. in a “phase—coherent” way) at the
foci of the paraboloidal antennas.

There are two possible designs for forming the secondary focus in paraboloidal
antennas which use convex (Cassegrain) and concave (Gregorian) hyper-
boloidal mirrors, respectively, as subreflectors (Figure 15). The Cassegrain
design is widely adopted in radio telescopes, because it allows a relatively sta-
ble structure against gravitational deformation and wind pressure. On the
other hand, the Gregorian design is better suited to the cases where both the
primary and secondary foci are used for receiving different frequency bands.
In fact, in the Gregorian design, the primary focus feed horn can simply be
inserted in front of the subreflector when needed and then removed to allow
the secondary focus to be formed.
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Figure 15: Cassegrain (left) and Gregorian (right) foci of paraboloidal an-
tennas.

2 Antenna Beams

2.1 Some Elements of Vector Algebra

Many textbooks list formulae of vector algebra such as shown in Figure 17.
It is not easy to memorize all these complicated formulae. Moreover, they
may often contain typographic errors! Without knowledge of these formulae,
however, it is difficult to understand electromagnetic theory of radiotelescope
antennas.

Fortunately, it is not necessary at all to memorize all these formulae.
Instead, we have to memorize just two symbols and one formula, only. They
are the Kronecker symbol 0;;, the Levi-Civita symbol €;;;, and a formula
€ijk€itm = 0ji0km — OjmOr. Here, repeated indecies ¢ implies summation, as
we will see below.

Let us consider a rectangular (Cartesian) coordinate system, with basis
vectors 41, 49, and 23, in a three—dimensional Euclidean space (Figure 16).

In this coordinate system, we consider a radius vector r to a point with
coordinates x, x9, and x3, as well as a scalar field ®(r) and a vector field
A(r) with elements A;, Ay, and Ajs, as functions of r.

Now let us introduce following notations and conventions.
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Figure 16: Rectangular coordinate system in a three-dimensional space.

1. Kronecker’s delta symbol ¢;;

0;; is 1 when the two indecies take the same value, and 0
when they are different.

0 ti#7
5y = atizJ (with 7,/ = 1,2,3).  (2)
1 ati =7
Therefore, 511 = 522 = (533 = 1, and 512 = (513 == 532 = 0.

2. Levi—Civita’s anti-symmetric symbol ¢;j;

€123 is defined to be 1, and sign is changed whenever adjacent
indecies are substituted.

€103 = 1

€213 = —€123 = — 1,

€312 = —€132 = €123 = 1, (3>
€321 = —€931 = €313 = —€123 = —1,

€112 = —€112 = 0, €930 = —€23p = 0,

3. Einstein’s summation convention

Repeated indecies, i say, imply summation over 11, 22 and

17



Let A, B,C,D be arbitrary vector ficlds assummed to be continous and
differentiable everywhere except at a finite number of points, and let ¢ and
¢ be arbitrary scalar fields for which the same assumptions are adopted. If
A - B is the scalar product and A x B the vector product then the following
algebraic relations are true:

A-(BxC)=(AxB)-C=(A,B,C)=(B,C,A)
=(C,A,B)=—(A,C,B)=—(C,B, A)

=—(B,A,C), (A.1)
Ax(BxC)=(A-C)B-(A-B)C, (A.2)
Ax(BxC)+Bx(CxA)+Cx(AxB)=0, (A.3)

(AxB)-(CxB)=A-[Bx(CxD)]

=(A-C)(B-D)-(A-D)(B-C), (A.4)

(AxB)x (CxD)=[(AxB)-D|C—-[(AxB)-C]D. (A.5)

Introducing the gradient of a scalar as V¢,V considered as a differential
operator obeys the following identities

grad(9 ) = V(6¥) = 6 Vi + 1 Vg, (A 6)

div(p A)=V-(¢A)=A-Vo+¢V-A, A.T)

(Lnl(c;ﬁA)—rot(q)A) Vx(pA) =9V xA—AxVo, A.8)
div(Ax B)=V:-(AxB)=B-(VxA)-A.(VxB), (A9)
(‘url(A X B)y=vot(A x B)y=VN x(Ax B),

=A(V-B)-B(V-A)+(B-V)A-(A-V)B, (A.10)
grad(A-B)=V(A-B)=Ax (VxB)+Bx(VxA)
+(B-V)A+(A-V)B. (A.11)

Figure 17: Typical formulae of vector algebra.
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33. For example,

3
AzBl = Z AAZBz = AlBl + AQBQ + Ang,

1=1

and (4)
3
Cjj = Cii = Ci1+ Co + Css.

i=1
4. Nabla symbol of spatial derivative V

V is a vector like differential operator with three ‘elements’

0 0 0
8—3717 8—372’ and 8—:103’ (5)

0

where 3
z;

stands for a partial derivative with respect to x;.
If we apply the above symbols and notations to vector fields A(r) and
B(r), as well as to a scalar field ®(r), we can express:

e a scalar (or inner) product A - B as

e i—th element of a vector (or outer) product A x B as
(A X B)z = EijkAjBku (7)

in fact, EljkAjBk = Ang — AgBQ, Egjk-AjBk- = A3B1 — AlBg, and
€3k A; By, = A1 By— Ay By, in agreement with the definition of the vector
product,

e i—th element of a gradient grad® as

0 0P
(grad®); = (V) = 8%@ = 52, (8)
e a divergence divA as
. 0 0A;
de—V-A—a—xiAi—a—xi, (9)

and
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e i—th element of a rotation (or curl) rotA as

0 0A;
(’I“OtA)i = (V X A)z = Eijka—l'jAk = Eijka—x:. (10)

A very useful relationship is known between the Levi—-Civita’s and Kro-
necker’s symbols, which is described by the formula mentioned earlier:

€ijk€itm = 0j10km — 0jmOpl. (11)

We can verify this formula by examining all possible combinations of indecies.
In view of Einstein’s summation convention, equation (11) is equivalent

to
€1jk€1m T €2jk€2um + €3jk€3tm = 0ji0km — 0jmOki- (12)

Since j,k,l and m may be 1, 2 or 3, equation (11) or (12) has, in general,
3* = 81 components. However, symmetry conditions greately reduce number
of components which we really have to individually consider.

First, let us consider what happens if we substitute indecies j and k, or
[ and m. Because of the antisymmetric property of Levi-Civita symbol, the
LHS of equation (11) is antisymmetric (only sign is changed) with respect to
such a substitution, and the RHS is also antisymmetric, since if we substitute
j and k, for example, the RHS changes its sign as:

Ok0jm — Okmdj1 = —(8u0km — OjmO)-

This says that, if we prove equation (11) for jk or Im, then the equation
is automatically proven for kj or ml. Moreover, if j = k or [ = m, the
both sides must be equal to 0 (therefore, equal to each other), since for any
number A, if A = —A, then A = 0. Consequently, among 9 components of
jk and 9 components of Im, we have to individually consider only 3 and 3
components, which are ‘12’, ‘13" and ‘23’, for example (see equation (13)).

11 12 13 11 12 13
jk=1| 21 22 23 |, and Im=] 21 22 23 |. (13)
31 32 33 31 32 33

Hence, in total, 3 x 3 = 9 components were left to be individually considered.

Furthermore, it can be easily seen that if [ or m in equation (11) is not
equal to neither 7 nor k, then both sides must be equal to 0. In fact, if jk is
‘12’, for example, equation (12) becomes

€312€31m = 51152m - 51m521-

20



Both sides of this equation are equal to 0, if [ or m is 3.
So, we have to consider individually, only three cases when both jk and
Im = ‘12, both jk and Im = ‘13", and both jk and Im = ‘23’. They are

for ‘12", LHS = €319€310 = 1, and RHS = 611000 = 1,
fOI’ ‘]_3l, LHS = €213€213 = ]_, and RHS - 611533 - ]-7
for 23', LHS = €193€193 = 1, and RHS = 050033 = 1.

Thus, we proved equation (11).

If we use the above symbols and equation (11), all the complicated for-
mulae of vector algebra are derived in straight forward ways. For example,

[A x (B x C)|; = €pAjermBiC,

= EkijeklmAjBlCm = (5iz5jm - 5im5jl)AjBlOm
= A;B,C; — A;B;C; = B;A;C; — C;A;B;
=[B(A-C)-C(A-B);,

and, therefore,
Ax (BxC)=B(A-C)—-C(A-B). (14)
We used here a property of Kronecker’s symbol: §;;4; = A;.
Also,
(A x B)-(C x D) = €r€amA;jBrC Dy, = A;ByC; Dy, — A; ByCy D,
and, hence

(AxB)-(CxD)=(A-C)(B-D)—(A-D)(B-C). (15)

Furthermore,
[V X (V X A)]z = eijk%lemaimlAm
=[V(V-A) - V2A]Z~,
where
0? 0? 0?

VQ

=+ 5+,
or? 0z  Ox}

21



and, therefore,

Vx(VxA)=V(V-A) -VA. (16)
Other useful examples are:
0 0 0
V. (A X B) = 6—1'162]k(AJBk> = BkEkija—l'iAj — AjEjika—xin, =
V.- (AxB)=B-(VxA)—A.-(VxB), (17)
0o 0 o 0 0 0
P —eip—m " P — " P — —ife P — ().
[V x (VO)l; %kﬁxj Oxy, Cikj Oxy, O Ewkﬁxj Oxy, 0, =
rot(grad®) =V x (V@) = 0, (18)
0 0 0o 0
V- (v X A) = a—l'zEZ]ka—w]Ak = Eijka—zbi%jAk = O, =
div(rotA) =V - (V x A) =0, (19)
and,
0 0P 0A;
V-(@A)—axi(CDAi)—a—xiAmL(I)axi—V<I>-A+¢V-A, =
div(PA) = grad® - A+ ¢ divA. (20)

2.2 Electromagnetic Waves in a Free Space

Prior to considering receptions and transmissions of radio waves (or, more
generally speaking, electromagnetic waves) by antennas , we will briefly dis-
cuss general behaviors of the electromagnetic waves in a free space, based on
the classical theory of electromagnetic fields.
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2.2.1 Maxwell Equations
Let us consider following vector and scalar field quantities:
symbol name unit in S1 system
E electric field intensity ~ V m™!
electric flux density Asm™?

magnetic field intensity A m!

D
H
B magnetic flux density Vs m™2
J
p
o

current density A m™2
charge density Asm™
specific conductivity AV-tmt
€ permittivity AsV-imt
1 permeability VsA=tm™?
Note that VA = W (watt) = Js1, VA = Q (ohm), and Vsm 2 =T
(tesla).

These quantities obey the basic equations of the electromagnetics, the
Maxwell equations:

oB
VxE= T (21)
VxH=J+ aa—?, (22)
V.-B =0, (24)
J=0FE, (25)
D =¢E, (26)
B =uH. (27)

In the vacuum, coefficients in the last three equations, which are sometimes
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called as ‘equations of state’, take following values:

Og = 0,
€ = 8.854 x 10712 A s V-1 m™!,
po = 1.257x 1075 Vs A=t m™1, (28)

which satisfy

-2
€otlo = Cy

where suffix 0 implies a vacuum value, and ¢y = 2.998 x 108 is the light
velocity in the vacuum.

2.2.2 Equation of Continuity

From Maxwell equations (22) and (23), and a formula of vector algebra given
in equation (19), we obtain

op

Tiv.J=0. 29
This equation implies that time variation of the electric charge, contained
within a finite region, is eqaul to the electric current flowing into (or flowing
out of) the region within a unit time. Therefore, this equation is called ‘equa-
tion of continuity of electric charge’ or ’equation of conservation of electric
charge’.

2.2.3 Conservation of Energy and Poynting Vector

If we take scalar products of equations (21) and (22) with -H and E, respec-
tively, and sum them up, we obtain

58_1;+H 9B E.J1E-(VxH)-H-(VxE)

E- :
ot
—-E-J-V-(ExH), (30)
where we used a formula of vector algebra given in equation (17).
Considering equations (25), (26), and (27), and assuming that permittiv-
ity € and permeability p are constant in time, we can express equation (30)

in a form:
10(E-D+ H - B)

2 ot
Taking into account that

+V-(Ex H)=—0F". (31)
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W~

E-D+ H - B) is the energy density of the electromagnetic field

2. 8 = E x H is the energy flux of the electromagnetic field, called
‘Poynting vector’ [W m—2],

3. —oE? is the Joule heat generated per unit time and unit volume due
to the Ohmic dissipation [W m™3],

we can interpret equation (31) as an equation of conservation of eletromag-
netic energy (Figure 18):

g—?‘FV-S: —oE”. (32)

s

-oE?

u= %(ED+HB)

Figure 18: Energy conservation of electromagnetic energy.

Among the quantities characterizing radiation from an astronomical source,
which were introduced in the previous chapter “Basic Knowledge of Radio
Astronomy’, the ‘power flux density’ (or ‘energy/radiation flux density’) S:

S— / S, dv, (33)

where S, is the spectral flux density, has the same unit [W m™2] as the
Poynting vector S. According to a standard definition adopted by the IEEE
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(1977), the power flux density is equal to the time average of the Poynting
vector of the electromagnetic wave. This is an important definition which
interrelates the radio astronomy with the electromagnetics, as we will see
later.

2.2.4 Wave Equations in a Stationary Homogeneous Medium

Let us consider a medium, where the specific conductivity o, permittivity e
and permeability p are real and constant both in time and space, and the
charge density is zero (p = 0, i.e., the medium is electrically neutral).

In this case, the first four of the Maxwell equations (21) — (24) take
simpler forms:

0H

E=—u——!

VX o
OF
H=0F+¢—,

V X o +66t/
V-E =0,

V-H =0.

Taking time derivatives of the first two equations, and using relations:
Vx(VxE)=V(V-E)-V?E=-V’E,
Vx(VxH)=V(V-H)-V?H =-V’H,

which are derived from a formula of vector algebra in equation (16), and the
last two of the above equations, we obtain

PE oE 9
— —V*E=0
oz TR Y ’
O*H 0H 5
— — —V°H =0,
T +ou T \Y% 0,

which are equations of the electromagnetic wave in a dissipative medium. If
we further assume a dissipationless medium, where ¢ = 0, and, therefore,
J =0 (no current), the wave equations are described in a familiar form:

’E
W — CQVQE = 0,
0°H
el AV*H =0, (34)
where 1
c= —— (35)

is the velocity of the electromagnetic wave (or light), which is equal to ¢y =
2.998 x 10® m s ! in the vacuum.
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2.2.5 Monochromatic Plane Waves

The simplest way to describe a solution of the wave equations (34) in the sta-
tionary, homogeneous, neutral (p = 0), and dissipationless (¢ = 0) medium
is to represent it as a superposition of monochromatic plane waves:

E = E, cos(k-r —wt) — Eysin(k - r — wt),
H = H, cos(k-r —wt) — Hy;sin(k - r — wt), (36)

where w = 27v is an angular frequency of a particular monochromatic plane
wave component (for simplicity, we will call the component as a ‘plane wave’),
T is a radius vector with components z1, x5, and x3 at a certain point in the
medium, k is a wave number vector of the plane wave, which satisfies

w? = ck?, with k=] k|, (37)

while E,,, Eq;, Hq,, and Hg; are constant vector coefficients. For further
convenience, we introduce complex vector coefficients:

Ey= FE\ +i1E, and Hy= H,, + Z'Iq-()ia (38)

where 7 is the imaginary unit, and express equation (36) for a plane wave in
an equivalent form:

E-% [Eoei(k-’l"fwt)]’
H = R[Heitkr-wn], (39)

where R implies a real part, using the well known Euler formulae:

16

e = cosf +isinh, and e

=cosf —isinf, for any 6.
Furthermore, we will omit this real part symbol & in most of following discus-
sions, since, as long as we perform linear operations, including differentiation
and integration, to quantities described in the form as equation (39), there
is no difference, if we take the real part before or after the linear opera-
tions. Therefore, we can perform all the calculations for complex quantities,
and, only after we obtain final solutions, recall that actual physical quanti-
ties correspond to real parts of the complex ones. This will greatly simplify
our mathematical manipulations. Thus, we will use a complex version of
equation (39):

E - Eoei(k-’l“fwt)’
H— Hoei(k'r_“’t), (40)
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where EE and H are now regarded as complex quantities, remembering that
actual electric and magnetic field intensities are ® E and R H, respectively,
which we hereafter denote as

E.,=RE, and H, = RH. (41)

Now we can easily verify that the plane waves as described in equation
(40) really satisfy wave equations (34). In fact, if we take the electric field
E in equation (40), for example, we have

*E 9% .
o Eoﬁe“k.hm) = W B *T) = B, (42)
and also - 5
2 = R — 7 i(k-’rfwt)
vE Ox; 8$iE Eo Ox; &rie ’
where
0 i(KT—w - 0 i(k-r—w . 0 itk-r—w
%e(kr t):z%(k"l“)e (k-r t):lax-(ijj)e (k-r—wt)
= ikj%ei(k-’r‘fwt) — ,L'kj(sijei(k.’r‘fwt) _ ikiei(k-rwt),
o
and, therefore,
a 0 _
9 itkr—wt) _ k2 i(k-r—wt)
€ = e
(9$i (917i ’
which yields
V2E _ _kZEoez(k-T—wt) - _L2E. (43)

From equations (42) and (43), it is clear that the plane wave E satisfies the
wave equation: )

O°E

oz AV?E =0,
in view of the relation w? = ¢?k?, given in equation (37), between the angular
frequency w and the wave number k. The same discussion holds for the
magnetic field H, too.

The reason, why the wave in equation (40) is called ‘plane wave’, is evident

from Figure 19. In fact, a surface of the constant phase (k-r—wt = const), or
a ‘wave front’ forms a flat plane, which is perpendicular to the wave number

vector k, and moves along k with the speed w/k = ¢ as time t increases.
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kr-wt=Const

Lty t, 1 8

kr

=Const + Wt

0

Figure 19: Wave front of a plane wave forms a flat plane moving towards k
with the speed w/k = c.

2.2.6 Electric and Magnetic Fields in a Plane Wave

Although any plane wave, with arbitrary constant E, or H in equation (40),
satisfies the wave equation (34), as we have just seen above, actual electric
and magnetic fields in an electromagnetic wave must be mutually related to
each other, and must exhibit certain characteristic properties.

These additional properties, which will be shown below, come from the
fact that the electric E and magnetic H fields must satisfy, not only the wave
equations (40), where they are completely separated, but also the original
Maxwell equations, where they are related to each other.

1. The waves are transversal.
In our homogeneous medium case, Maxwell equations (23) and (24) are
reduced to
V-E=0,
V-H=0.
Inserting the plane wave form of the electric field E. given in equation
(40), into the upper one of the above equations, we have

v.E = E, aa ei(k-’f‘fwt) _ ikiEmei(k-rfmt) —ik- Eoei(k-rﬂ;t) —0.

Since this relation holds for arbitrary ei® =<t we have k- Ey = 0 and,
therefore, k - E = 0. The same argument holds for the magnetic field
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as well in the lower equation. Thus, we obtain

k-E =0,
k-H =0. (44)

Taking real parts of these complex equations, we easily see that the
actual physical fields E, and H,., which are the real parts E, = RE
and H, = RH as defined in equation (41), also satisfy

k-E, =0,
k-H, =0, (45)

which show that the vector fields are perpendicular to the direction n

of the wave propagation:

k
= (46)

This means that the plane electromagnetic waves are transversal.

n

. Orthogonality of electric and magnetic fields.

In our stationary, homogeneous, dissipationless (¢ = 0, J = 0), and
neutral (p = 0) medium, Maxwell equations (21) and (22) are reduced
to

OH

E= 2%

V x uat,
OF

H=c—.

V x Eat

Let us insert the plane wave forms of the electric (E) and magnetic
(H) field intensities, given in equation (40), into the upper one of the
above equations.

Since

(V X E)z = eijkE0k£ei(k-T7wt) _ Z-eijkkjEOkei(k.r,mt)’
J
we obtain
VxE=ikxE.
Also,
8@—? — HO%ei(k-th) — _Z wHOei(k.rfwt) _ —7’ wH

Similar relations:

VxH=1kxH, and aa—f:—in,

30



hold for the lower equation. Therefore, we have

kExE=pwH,
kx H=—cwE. (47)

Taking real parts of these complex equations, we obtain the same rela-
tions:

k X ET = NWHM

kxH,=—ewE,, (48)
for the actual physical field quantities E, and H, (equation (41)), as
well.

Therefore, we have

E,-H, =0, (49)

which means that the electric and magnetic fields are perpendicular
(orthogonal) to each other (Figure 20).

Figure 20: Electric and magnetic fields in a monochromatic plane wave are
perpendicular to a direction of propagation, and to each other.

3. Amplitudes of electric and magnetic fields. Intrinsic impedance.
From equations (45) and (48), and also from a formula of vector algebra
given in equation (15), we have

1 1

|E, |>=E,-E, = m(k x H,)-(kx H,) = w2€2k2 | H, |?,
and .
| H, ’= 5=k | E, |*.
w2y
Since we have
k? 1
ZE e
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from equaions (37) and (35), the above two equations are equivalent,
and express the same relation, describing the amplitude ratio of the
electric and magnetic fields in a monochromatic plane wave:

1 €
L N CAL ANRTNE ARNEAD AP

The coefficient:
Z =/, (51)

which is equal to
_ | E |

CH |
is called ‘intrinsic impedance’ of the medium, and is measured by a
unit: [V A™' = Q (Ohm)], which is the same with the unit of the

resistance in an electrical circuit. The value of the intrinsic impedance
in the vacuum is equal to

Zy= B =376.3 Q.
€0
. Poynting vector.

From equations (45) and (48), and also from equation (14) of vector
algebra, the Poynting vetor S of the monochromatic plane wave is
expressed as

A

1 k
S = E.xH,=—E,x(kxE,)=—n|E, |
W w i

1
— \fon B - gn B
L

n —

where
k Y
as defined in equation (46), and, therefore,

1
S=_n|E [=Zn|H,[. (52)
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2.3 Generation of Electromagnetic Waves

Now, let us consider generation of electromagnetic waves from a matter (from
an antenna, in particular), where we must take into account existence of the
electric current and the charge.

If we try to describe this new problem, still using the electric and mag-
netic field intensities E and H as basic quantities, as we did in the previous
section for the free space case, equations involved get fairly complicated. A
much more transparent treatment is achieved, when we use so—called elec-
tromagnetic potentials as basic quantities.

2.3.1 Electromagnetic Potentials

As we saw in equations (19) and (18), for any vector field F'(r) and any
scalar field f(r), we have identity relations:

V- (V x F)=0,
Vx (Vf)=0.

It is known that following inverse relations generally hold (see, for exam-
ple, “Classical Electricity and Magnetism” by Panofsky and Phillips, Dover
Pubns):

If a relation V-Q(r) = 0 holds everywhere for a vector field Q(r),
then such a vector field can be always expressed as a rotation of
a certain vector field F(r), i.e., Q =V x F.

If another relation V x R(r) = 0 holds everywhere for a vector
field R(r), then such a vector field can be always expressed as a
gradient of a certain scalar field f(r), i.e., R= V.

From Maxwell equations (24) and (21), we know that relations:

V- -B =0,
0B

E=-"

V x 5

hold everywhere.
Therefore, in view of the upper one of the above two equations, we can
express the magnetic flux density B as

B=VxA, (53)

through an appropriate vector field A(r,t), which we call hereafter ‘vector
potential’.
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Then, the lower one of the above two equations now becomes

0A
Vx(E+—)=0.
Therefore, we can express the vector E 4+ 0A/0t through an appropriate

scalar field ®(r,t), which we call ‘scalar potential’, as

0A

E+ 2> =-Vd
+ = Vo,

and, hence, the electric field intensity E is expressed as

0A
E=-Vo T (54)
The vector potential A(r,t) and scalar potential ®(r,t), brought to-
gether, are called ‘electromagnetic potentials’. They are regarded as aux-
iliary quantities, which are not directly measurable, but help to effectively
express actual, physically measurable, quantities such as E and B. Units of
the electromagnetic potentials are

respectively.

2.3.2 Lorentz Gauge

Electromagnetic potentials A(r,t) and ®(r,t), which satisfy equations (53)
and (54), are not unique. In fact, it is easy to confirm that for an arbitrary
scalar field A(7, 1), a new set of potentials

A = A+ VA,
OA
= —

also satisfy equations (53) and (54), if A and @ do.
It is a usual practice, in the wave generation problem, to introduce a
constraint between A and ® called ‘Lorentz gauge’:

P
V-A—Feuaa—t:(), (56)
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using the above ambiguity, or, better to say, the freedom. The Lorentz
gauge, as given in equation (56), allows us to formulate the generation of
electromagnetic waves in a very smart way, as we will see below.

It is remarkable that any electromagnetic potentials A, and ®,,, which
originally do not satisfy the Lorentz gauge:

0,
2 70
can be converted to new ones fulfilling equation (56), by using a scalar field
A in equation (55), which satisfies an equation:

02\
o

V- -A,+ep

0,
ot
Of course, the physically measurable fields, such as E and B, are not affected
by this conversion.

Therefore, we can always select electromagnetic potentials A and &,
which correspond to real electromagnetic fields through equations (53) and
(54), and, at the same time, satisfy the Lorentz gauge (equation (56)):

~ VA=V A, +ep

B=VxA,
0A
E_—Vé—ﬁ,

0P
V-A+epu— =0.
T
Hereafter, we will consider only such electromagnetic potentials.

2.3.3 Wave Equations with Source Terms

We will assume, for simplicity, a homogeneous and stationary medium with
respect to the permittivity € and the permeability u, i.e., € = const and p =
const both in time and space.

Inserting equations (53) and (54) into a Maxwell equation (22):

oFE
H=J+e——
VX TS
we have . A 50
— A)=J —e(— —)-
HVX(VX ) 6(8752 +v8t>
In view of equation (16), this equation is reduced to
P A 0P
-A) - V?A = — — —
V(V-A) -V wd —ep 52 euvat,

35



and, then,

0*A 0P

24— en S8 - g Atren Ty = puJ
\Y h o pd+V(V-A+ep 8t) wd.
where we used equation (56) of the Lorentz gauge.

Also, another Maxwell equation (23):
eV -FE =p,

can be expressed as
0A
eV - (VP + 222 =
eV-(Ve+—-)=p,

through the electromagnetic potentials, and is reduced to

9 1
2p 4 —(V-A)=—=p
\% +at(V ) oz

and, then
0?P 1
V2P —epp— = —— p,
SRV P
where we again used equation (56) of the Lorentz gauge.
Introducing again the light velocity ¢ (¢ = 1/ € u), we obtain equations

1 9%A
1 0?® 1
26 _ 2 =
Ve c? Ot? e (58)

which have the simple form of the wave equation. The only difference from
the free space case in equation (34) is the existence of RHS terms, which
are source terms of the wave equations. These equations describe the inter-
action of the electric current J and charge p within a source medium with
the electromagnetic waves A and @, i.e., the current and charge may gener-
ate the waves in a free space (transmission), or the waves in the free space
may generate the current and charge in the source medium (reception), as
schematically shown in Figure 21.

Equations (57) and (58) are consistent with equation (56) of the Lorentz
gauge, as we can easily verify using equation (29) of continuity (or conserva-
tion) of electric charge.
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source medium

Figure 21: A schematic view of the interaction of the current and charge in
a source medium with the electromagnetic waves in a free space.

2.3.4 Solution of the Wave Equation with the Source Term

Let us consider solutions of equations (57) and (58). Since each component
of vector equation (57) and scalar equation (58) have the same general form
of | (1)
2z~ /) (59)
where f and ¥ are functions of the time ¢ and the space r, we will confine
ourselves to seeking a solution W(r,t) of equation (59) with a source term
—f(r,t). We assume that the source term takes some finite value only within
a certain source medium.

In order to express the RHS of equation (59) in an integral form, we use
Dirac’s delta function §(r), which has following functional properties:

d(r) = 0, when r #0,
/5(r—r’)dV’ = 1,

v

/F(r')é(r —r)dV' = F(r), for any function F(r),

|4

V2U(r,t) —

where dV’' = dadxbdrl is a volume element, and the integration is taken
over some volume V' containing a point . Now we can express the RHS of
equation (59) as:

2 182 /
Va(r,t) — — 5’t2 f ', t)o(r —r')dV’, (60)

&
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source medium

o

Figure 22: Geometry of the source medium region.

where the integration is taken over an appropriate volume V', containing the
source medium and a point r (see Figure 22).

Let us now consider the same wave equation with a time variable point
source at the origin r =0 (O):

1 0%
2 _

Vo — 202 —f(rs, 1)o(r), (61)
where 7, is a radius vector indicating a certain point in the source medium,
and —f(r,, t) is the source term of equation (59) at a time ¢ and at the
point » = r,. Note that r, is regarded here as a constant parameter, and
therefore, —f(r,, t) in equation (61) is treated as a function of time ¢, only.

If (7., 7, t) is a solution of the above equation (61), then ¢ (7., r—71', t)
is a solution of equation:

o, 1% ,

Vo — 202 —f(rs, 1)o(r — 1),
since the LHS of equation (61) is invariant with respect to a parallel shift of
the spatial coordinate system: r — r — r’. Consequently, (', r — ', t) is
a solution of equation:
2 - LY =—f(r' t)é(r — 1)
c? Ot2 ’ '
And, finally, in view of the principle of superposition of solutions in a liner
equation,

U(r t)= /¢(’r', r—r' t)dV'. (62)
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is a solution of our wave equation 60 with a source term:

L O*W(r,t)

VQ\I/(’I“, t) — 2 aE

/frt o(r —r")dV' = —f(r,t).

Thus, we can use the solution ¢ (r,, 7, t) as a Green function, in order to
obtain a solution of equation (59), or (60).

Now, the solution of the equation (61) (Green function) is expressed in a

form: ot )
Ir*; :F t
L t)y=220 " T el

Y(r 7. t) 47r

where r =| 7 |= /T;x; = /2% + 23 + 23, as we can veryfy in the following

way.

, (63)

1. We use following general formulae.
e For a radius vector r,

Vr = z, and V-r =3, since (64)
T
<VT)Z N 8.TZ N 8—371 Tt = 21 /LT 5’3:1 (-Tk-rk) N ?’
and V’l":axzz(s”:?)
0a:i

e For a function R(r) of the radius r,

d*R(r) = 2dR(r)

D) o 4 .
VR(r) = o + ~— - since (65)
dR dRr
2 fd . = . —_— —
V°R(r) = V-VR(r)=V (dr VT) V- (dr r)

1dR 1dR
N V(rdr) r+(rdr)v.r
_ 4 (LdRY , (1dR\ _#R 2dR
- dr \rdr rdr)  dr?  rdr
e For a particular function 1/7, which is singular at the origin, we have

Vv? (1) = —47o(r), (66)

r

as we know from the potential theory (electrostatic potential around
a point charge, Newtonian gravitaional potential around a point mass,
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etc., ...). Equation (66) can be easily confirmed, if we integrate the
both sides of the equation through a volume V', containing the origin,
and apply to the LHS Gauss’s integration theorem:

/VuMV:%AnM, (67)
\4 S

where A is an arbitrary vector field, V' is a closed volume, covered by
a surface § with a normal vector n. In fact, the RHS gives

—47r/5(7') dV = —4m,
%
and the LHS also yields

/v-v (1> dvjfv G)-nds —%%-nd&’ —fdgz i,
T T T
\% S S

where df is a solid angle element.
. Let us introduce a notation:
r
u=tF —.
c

Then, the function ¥ in equation (63) is now expressed as

f(r., u)
w© T 1) = .
Y(rs, 7, 1) -
Noting that
of dfou Of df ou ) ou ou 1
Yo _wyYw YW YR h = —1 v
ot dudt’ Or duodr’ wit ot , and or ¥c’
we obtain
0%y 1 d?f
o2 drr du?’
and

V — V24V (i> V4 fV? (i>

A7r Ay 4rr
1 (2 20f 2 af

= E(a— W)TM@—”(’“)
1 1d2f

= Twaae 00
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Therefore, the function ¥ (r., r, t) in equation (63) really satisfies the wave
equation (61) with a point source term at the origin:

2y _ 1O _ r
02 8t2 - f(r*7 t:F C)(S(r)

—f(rs, 1) 4(r),

and, hence, can be used as a Green function for solving equation (59) in the
form given in equation (62).

2.3.5 Retarded Potential

Now, from equations (62) and (63), a solution of the wave equation with the
source term (59) is expressed as:

/ P—7|
qf(r,t)zﬁ/f(’“’”[ =) gy (68)
1%

|7 =]

In actuality, there are two choices of solutions corresponding to ‘+’ and ‘—’
signs of the F term in the numerator of the integrand. One solution with
‘—7 sign is called ‘retarded potential’, and another with ‘4’ sign is called
‘advanced potential’.

Meanings of the retarded and advanced potentials can be better under-
stood in the simplest case of the point source term at the origin (r = 0),
when the solution takes the same form as the one in equation (63):

gt ¥ )

¥(rt) = A7r

where g(t) is a function describing the time variation of the source term.

The retarded potential with ‘—’ sign describes that some pattern of time
variation, originated in the source region (a point in this case), propagates
outward with decreasing amplitude in proportion to 1/r. The pattern at a
distant point (with larger r) is retarded compared with the one at a near
point (with smaller 7). This represents a typical example of the transmission
of the electromagnetic wave from the source region (Figure 23).

On the other hand, the advanced potential with ‘+’ sign describes that
some pattern of time variation propagates inward, and induces the same
sort, of time variation in the source region. The pattern at a distant point
(with larger r) is advanced compared with the one at a near point (with
smaller 7). This obviously represents the reception of the electromagnetic
wave, coming from outside, at the source region (Figure 23). However, this
is not a ‘typical’ example of the wave reception, because the proportionality
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Figure 23: Pattern propagations in retarded and advanced potentials.

to 1/r implies that the incoming wave must converge at the source region.
This occurs, for example, in the converging wave reflected by a paraboloidal
mirror of a radio telescope antenna, but in a limited space—time range.

We will consider, hereafter, the problem of the transmission of electro-
magnetic waves from a source region (or an antenna). Therefore, we will use
the retarded potential only.

Coming back to the electromagnetics, we obtain retarded potential solu-
tions for wave equations (57) and (58) with source terms as follows:

! |T=7"]
H J(r' t———)
A('f’, t) = E/ | R |' dV’, (69)
T e N
o = — € .
(r1) = o / Y (70)

Since the vector potential A and the scalar potential ® derived here are not
independent to each other, but related by Lorentz gauge in equation (56):

VA+6ME;—T:0,

we will consider hereafter the vector potential A only.

2.3.6 Transmission of Radio Wave from a Harmonically Oscillat-
ing Source

Let us consider a case when the current density J(7, t) is harmonically (or,
sinusoidally) oscillating everywhere in a source region with the same angular
frequency w = 27v:

J(r, t) = J(r)e ™" (71)
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In this complex representation, we again use the convention, that the actual
physical quantity is expressed by the real part of the complex quantity (in
the above particular example, the actual quantity is ®[J(r)e™*']). The
assumption of the same frequency, and the resultant separation of spatial
and temporal variables, might seem a little artificial. But this must be valid
for a frequency component in a Fourier expansion of the time variable current
density.

The vector potential A(r, t), generated by such a current, is also ex-
pressed in a similar form:

A(r, t) = A(r)e ™. (72)

In fact, inserting equation (71) to the formula of the retarded potential in
equation (69), we obtain

ik|r—r’| )
A(r, 1) = {” [ | e

Am |7 — 1|

and, therefore, we know that A(r, t) is really expressed in the form of equa-
tion (72), with
L eik|r—r’|
Alr)=— [ Jr')———aV’, 73
= [ 10— (73)
where k = w/c = 2r/A, with A being the wavelength corresponding to the
angular frequency w.

Now let us consider the generated electromagnetic wave in a homogeneous
medium located outside of the source region, where J = 0 and €, u =const.
From the definition of the vector potential and the Maxwell equation, we
have:

B =V x A, and, hence, H = lV X A, (74)
1
oD .
Vx H= a0 and, hence, —iweE =V x H. (75)

Therefore, the magnetic and electric fields of the wave, generated by the
harmonically oscillating current J(r, ¢) in equation (71), and having the
vector potential A(r, t) of the form of equation (72), are expressed as:

1

H(r,t) = H(r)e ™, where H(r)= ;V x A(r), (76)

E(r,t) = E(r)e™™', where E(r)= z% V x(Vx A(r)), (77)

where we used the relation ¢ = 1/ep.
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2.3.7 Electromagnetic Fields Far from the Source Region

Let us now calculate the electromagnetic fields generated by the harmoni-
cally oscillating current in the source region, taking into account the explicit
expression for A(r), given in equation (73). For definiteness, we choose the
origin of radius vectors r and 7’ within the source region.

i~th component of the rotation of A(r) in equation (76) can be expressed
as:

Vx A 0 4 b [ o) 2 g s
(V x A(r)); = Eijka—xj w(r) = Eeiﬂc/ k(7 )3—%| | (78)

Since .

71 |-

0
81:1-

we have, in the integrand of equation (78),

|r—1r

ik|r—7'
0 el | B 1 0 ik|r—r'| ik“‘—”/\_a 1
— = - e +e T — o |
day[r—r' | [r—r |z Ouj|r—r|
_ik(x; — 7)) K| Tj — ik|T—7"| (79)

Let us assume that we observe the electromagnetic field at a point, which is
far from the source region. If we assume that the distance of the point from
the source region is much larger than the wavelength:

|7 =7 |> ) (80)

(see Figure 24) and, hence,

1
T ES—— 1
k|’r—r’|<<’

then we can neglect the second term in the RHS of equation (79), compared
with the first term, so that

o k=Tl ik(x; —af)

v _ ik\rfr’\.
oz |r—1"| |7 —17" |2

If we, furthermore, assume that the distance of the observation point from
the source region is much larger than the size of the source region (see Figure
24), we have,

|7 >, (81)
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and, therefore, we can finally approximate equation (79) with

ik|T”—7’
9 e | ik I =T

dxj|r—7r| 2

where r =| r |, as before. Inserting this approximate formula into equation
(78), we obtain

1k , / Lk , /
V x A(r) = %:—2 X /J('r") eMr="1 gy = %n X /J(r’) M=l gy,
(82)

where we introduced a unit vector

n=-. (83)

The same sort of discussions, under the same approximations of equations
(80) and (81), lead to

k? - /
V x (VxA(r)) = —4—“ n x (n x /J(r’) M=l gy, (84)
r
Therefore, in view of equations (73), (76) and (77), we have approximate
formulae for the vector potential, magnetic field and electric field:

(r) = 4% / J<r'>e“f“”*’°"dvc (85)
H(r)= —v < A(r) = 1~ nx /J )=y, (86)
E(r )=§vX(vXA( )>=—4—an nx/J yeTTlav), - (87)

where Z = \/pu/e is the intrinsic impedance, as defined in equation (51), and
we used relation ¢ = 1/, /e, as given in equation (35), in deriving equation
(87).

2.3.8 Far Field Solution and Fraunhofer Region

It is worth to note that we did not approximate | »—r' | by r in the arguments
of exponential functions in equations (85), (86) and (87), even though we
assumed that | 7 |>| ' |. Such approximation is not valid, in general, in
an argument (or phase) of any sinusoidal function, since only remainder of
the argument divided by 27 is meaningful in such a function (for example,
cos(983517826° + 132°) = cos(983517826° x (1 + 1.34212107 x 1077)) is not
close to cos(983517826°) at all).
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However, if we find an ‘absolutely’ small term in the argument, which is
much smaller than 1 radian, say, we can safely neglect such a term, and this
may allow us to derive a useful approximate formula.

Let a characteristic size of our source region (aperture diameter of an
antenna, for example) be D, distance to the observation point from the origin
in the source region be r, and the wavelength be A = 27 /k. We can generally
expand the argument in the exponential term & | » — 7' | into a Taylor series:

2
r-r 17

Elr—7|=kvr2—=2r v +72=2kr (1 — — ).
|r—7"| Vr rer +r r( 3 +2r2+ ) (88)
If a condition, which is called “Fraunhofer condition”,

2D?

T <K T, (89)

is satisfied among r, D and X (see Figure 24), the third term in the expansion

Fraunhofer region

2D? D A

— <, or lE—D<<§
T

Observation point | X

J=0
H,€=const .~

7y~ 2D/

Fresnel Region

Source region

Figure 24: Fraunhofer condition.

of equation (88) fulfills

o~ — L .
2 r AT 2

Therefore, we can neglect the third and higher order terms in the expansion

of equation (88), in the argument of the exponential function, and obtain

1kr’2 7w D? T

eik|r—r’| ~ eikr—ikn-r’

: (90)
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where n = r/r, as before. Note that, on the contrary, the second term has
the order of magnitude of

kn -1 ~ 222
n-r N

and cannot be neglected at all, in general, in the argument of the exponential
(or, sinusoidal) function. In this approximation, equation (85) for the vector
potential, for example, is expressed as

eikr

Ar)y =L /J(r’) e T gy

47 r

Now the integral term is a function of the direction n only, and does not
depend on the distance r to the observation point.
The region where r > 2D?/) is called “Fraunhofer region” or “far field”,
and the region where r < 2D?/) is called “Fresnel region” or “near field”.
In the Fraunhofer region, we can approximate the exponential term as
shown in equation (90). Therefore, introducing a vector T'(n), characterizing
a directional pattern of the radiation in the far field,

T(n)= / J(r')e FT gy, (91)
and taking into account the temporal variation of the electromagnetic fields,

we obtain, from equations (72), (76), (77), (85), (86), (87) and (90), so—called
far field solutions:

A L ei(kr—wt) T 5
) = LT, (92)
- 1 6i(kr—wt) T
(r,t) = i 3\ " n x T(n), (93)
7 ei(k’r‘—wt)
E(r,t) = —i o n X [n x T(n))]. (94)

These equations describe harmonically oscillating and spherically expanding
directional patterns T'(n), n x T'(n), and n x [n X T'(n)], i.e. the spherical
waves.

It is clear from equations (93) and (94), that we have

n-H=0 n-E=0, and H-E =0, (95)

which imply that the magnetic H and electronic E waves are transversal
and mutually orthogonal. It is also clear from the same equations that

1
E=-7nxH, and HZEnXE. (96)
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Taking real parts of these complex equations, we see that the same relations
hold for actual electromagnetic fields, which are real parts of the complex
expressions: H, =R H and E, = RE, i.e.

1
E . =—-/nxH, and H, = Enx E,.
Therefore, the Poynting vector S for the spherical wave is expressed as:
1
S:ETXHT:Zn|HT|2:Zn|ET|2. (97)

This equation means that the Poynting vector of the spherical wave is di-
rected towards m = r/r, which is nothing but the direction of propagation
of the wave, and the amplitude ratio of the electric and magnetic fields is

E, |
= (98)

i.e. equal to the intrinsic impedance of the medium 7 = \/T/e These
properties are the same with those in the plane wave case, which we discussed
earlier. Of course, the spherical waves locally approach to the plane waves
when r — oc.

2.3.9 Hertz Dipole

We are now in position to derive some results on transmission of the electro-
magnetic waves from simple antennas, using the far field solutions in equa-
tions (92), (93) and (94). First, we will consider an idealized antenna, com-
posed of an infinitesimal electric dipole called “Hertz dipole”, which was
discussed by Heinrich Hertz in 1888.

Let us consider an infinitesimally small cylinder with infinitesimal cross
section ¢ and infinitesimal length [, which is located at the origin of a rectan-
gular coordinate system and directed towards 3-rd axis (Figure 25). Let us
assume a homogeneous electric current I, which is flowing within the cylinder
and harmonically oscillating in time oc e ",

In this case, the vector T'(n) characterizing the radiation pattern in the
far field in equation (91) takes a particularly simple form. In fact, if we
assume that [ < A\, where X\ is the wavelength, we have

27T .y ’
kn -r' ~ 7[ < 1, and, therefore, e "7 =~ 1
in equation (91), and, consequently,

T(n):/JdV’:qu:Ilig, (99)
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i2

Figure 25: Hertz dipole.

where 23 is the unit vector along the 3-rd axis. Applying equation (99) to
equations (92), (93) and (94), we obtain non-zero components of the far field
solutions of the transmitted wave:

/L]l ei(krfwt)

Ayl t) = E2° * 1
oy = AT (100
T i(kr—wt)
Hy(r, t) = —iQ—ie sin 6, (101)
T
711 i(kr—wt)
Eo(r.t) = —z’ie — sin, (102)

where € and ¢ are angular variables shown in Figure 25. Or, for actual
physical quantities A,, H, and E,, which are real parts of the respective
complex quantities, we have the non-zero components in the far field:

pll cos(kr — wt)

Aps(r,t) = RAs(r, t) = , (103)
47 T
H,y(r t) = RHy(r, t):%wsme, (104)
T
Z 11 sin(kr — wt
Er(r.t) = REy(r, 1) = 5 sin(kr = o) G, (105)
T

The sin € dependence of the magnetic and electric fields shows the effective-
ness of transmission of the electromagnetic wave to a certain direction 6, ¢,
which is called field pattern. Since the above equations do not have any
dependence on ¢, the field pattern of Hertz dipole is axisymmetric, and has
a torus like shape shown in Figure 26.

We can now easily calculate Poynting vector of the far field: S = FE, x
H, = E.4H,,n, transmitted from Hertz dipole. If we denote a time average
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Figure 26: Field pattern of Hertz dipole.

of S as (S), then the absolute value of the time averaged Poynting vector is
expressed as:

Z (11\? sin®0
1(8) 1= (Bt = 5 (55) o (106)

since, in general,
1
(sin?(kr — wt)) = o

The sin? § dependence in equation (106) shows the effectiveness of transmis-
sion of the electromagnetic power to a certain direction 6, ¢, which is called
power pattern (Figure 27).

Figure 27: Power pattern of Hertz dipole.

Figure 28 shows time variation of the electromagnetic field in the near
field of the oscillating Hertz dipole, which can be calculated using exact
equations (73), (76) and (77). This figure is copied from a webpage

http://didaktik.physik.uni-wuerzburg.de/ pkrahmer/home/dipol.html.
One can see an animation movie of the transmission of the electromagnetic
wave from the Hertz dipole in this webpage.
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Figure 28: Time variation of the electromagnetic field close to
the Hertz dipole (from http://didaktik.physik.uni-wuerzburg.de/ pkrah-
mer/home/dipol.html).

2.3.10 Linear Dipole Antenna of Finite Length

The Hertz dipole was still an idealized antenna. We now consider a realistic
antenna, a linear dipole of finite length, with an oscillating current fed from
the center of the linear dipole (Figure 29).

Let us assume that a linear dipole of length L is directed towards 23 axis
and its center is located at the origin. Let us also assume that the spatial
distribution of the harmonically oscillating electric current (o< exp(—iwt)) is
given by an empirical formula:

I(z) = Iysin |k §—|z| , (107)

where z is distance from the origin along ¢3 axis, and k = 27/ \.
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Figure 29: A linear dipole of finite length.

Then, in the far field, we have

N L/2 .
T(n) = /J(r’)e—zkn-r AV’ = i3/L/ [(Z)e—zkzcose d=
—L/2
L/2 I |
—L/2 2
L/2 i
= 21 is/ sin (7 - k;z) cos(kz cos ) dz
0
21, kL kL
= a9 { (79) — cos (7)} , (108)

where 6 is an angle of the direction of propagation n from the 25 axis. There-
fore, equation (94) gives a non-zero component of the far field solution of
the electric field:

Eo(r. ) = —i Z 1y e'*r=<1) cos (EL cos 9) — cos (%) . (109)
2w r sin 6

This result shows that the field pattern of the linear dipole antenna is different
with different ratio L/\ between the dipole length and wavelength. Figure
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Figure 30: Field patterns of linear dipole antennas with lengths L = 0.5\
(left), L = 1.0\ (middle), and L = 1.5X (right) in the far field region.

30 shows field patterns of linear dipole antennas with different L/ ratios in
the far field region, calculated on the basis of equation (109).

Thus, we succeeded to transmit the electromagnetic wave from a realistic
antennal

Fifure 31 shows time variation of the near field around the linear dipole
(from Kraus, Electromagnetics, Third Edition, Mc Graw-Hill, 1984).

2.4 Transmitting and Receiving Antennas
2.4.1 The Reciprocity Theorem

We derived field patterns of the simplest dipole antennas as dependences of
transmitted electromagnetic fields on different directions, which characterize
transmission efficiencies towards those directions. It is well known that the
same antennas can be used both for transmission and reception of the elec-
tromagnetic waves. For receptions, we also call “field patterns” the reception
efficiencies from different directions. Then, how the transmission and recep-
tion field patterns of the same antenna are related to each other? In order
to answer to this question, we will consider Rayleigh’s Reciprocity Theorem
(1894) as applied to the electromagetics.
The reciprocity theorem states the followings.

Let the electromagnetic fields, generated by two source currents
J1 and Jo, be E{, H, and Ey, H,, respectively. If the source
currents exist within two finite spatial regions V; and V5 only
(Figure 32), and if a volume V includes both the two regions,
then we have

/(El-J2 —E,-J,)dV =0. (110)

|4
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Figure 32: Electromagnetic fields generated by two source currents confined
within two finite spatial regions.

Let us prove this theorem in a case of homogeneous medium (e, p =
const), and harmonically oscillating currents ( oc exp(—iwt)). In this case,
from Maxwell equations (21) and (22), we have:

VXH1:J1—iWEE1 VXngJg—iWEEQ (111)
V x E1 = w;qu V X% E2 = Z(.UMHQ (112)

Using a formula of vector algebra in equation (17):
V.- (AxB)=B:-(VxA)—A.(VxB),
and equations (111) and (112), we have

V- (Eix Hy))=H,-(VxE))—E;-(VxH,)
=iwuH, - Hy — E; - Jo +iweE; - Es,

V- (Eyx H))=H, - (VxEy)—E,;-(Vx Hy)
=iwuH, - Hy — Es - Ji +iwekl; - E,.

Taking difference of the above equations, we obtain

V'<E1XHQ_EQXH1):E2'J1_E1'J2.
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Then, integrating the both sides of the above equation through the volume
V', which includes source regions of both J; and J,, and applying Gauss’s
integration theorem in equation (67) to the LHS, we have

%(ElXHQ—EQXHl)"n,ndS:/(Eg'Jl—El'Jg)d‘/, (113)
14

where n,,dS is a vector of the surface element on the volume V with a unit
normal vector n,,.

I ds

rz

J1 oJz
(0]

Figure 33: Geometry of the source current regions and radius vectors to a
point on the surface of the volume V.

Let us denote radius vectors from centers of the two source current regions
to a point on the surface (point A, say) of the volume V as r; and 75, and
let us also denote a radius vector from the origin O, at the middle point of
the two current regions, to the point A as 7, as shown in Figure 33.

If we adopt a sufficiently big volume V', so that its surface is in far field
regions from the two current regions, the electromagnetic fields are approxi-
mated by the spherical waves, which satisfy

Elz—anle, EQZ—ZnQXHQ, (114)

where ny = r1/r; and ny = ry/rs.

Let us further assume, for simplicity, that the surface is a sphere with the
center at the origin O. In that case, the unit normal vector n,, to the surface
element at the point A is n,, = n = r/r. Then, the surface integral in the
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LHS of equation (113) becomes
%(El X H2 —EQ X Hl) nndS
:—Zj{[(nl XHl) XHQ—(’I’LQ XHQ) XHl]ndS

7 flin- Hi)(ns - Ho) (- Hy)(ne - H)
—n-(ny—ng)(H, - Hy)]dS
—~Z §l(n- Hy)ny — ) Ha -~ (n- Ha)(ma ) - H,
—n-(ng —ng)(H, - Hy)|dS, (115)
where we used a formula of vector algebra
Ax(BxC)=B(A-C)-C(A-B),

given in equation (14).
Now, if we tend the radius r of the sphere to the infinity (r — o), then
dS o r?, since dS = r?sin 0 d d¢,
| H, || Hy |x r—2, because they are spherical waves,
n,—mn,ny—mn, hencen,—n—0,n,—n—0, n —ny— 0.
Consequently, the LHS of equation (115), and therefore LHS of equation

(113), too, tends to zero, when r — oc.
Thus, for a sufficiently large spherical volume V| equation (113) gives us

/(EQ'Jl_El'JQ)dV:O. (116)
v
But, since we assume that the currents J; = 0 and J, = 0 outside of

the finite regions Vi and V5, respectively, equation (116) must hold for an
arbitrary volume V', including V; and V5. Thus, we proved the reciprocity
theorem.

Equation (116) can be expressed also in a form:

W Vo
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Figure 34: Transmission (left) and reception (right) field patterns of an an-
tenna.

2.4.2 Equivalence of Field Patterns in Transmission and Recep-
tion

Suppose an antenna, which is transmitting the radio wave towards the sky.
The transmission field pattern is defined as the direction dependence of
the amplitude of the electromagnetic field transmitted from the antenna (see
left panel of Figure 34). Now suppose the same antenna is receiving the
radio wave from a hypothetical distant emitter of unit strength located in
an arbitrary direction of the sky. The reception field pattern is defined
as dependence of the amplitude of the received electromagnetic field, or the
resultant voltage in a receiver system, on the direction of the emitter (see
right panel of Figure 34).

The reciprocity theorem shows us that the transmission field pattern and
the reception field pattern of the same antenna are identical.

In order to prove this statement, let us again consider that a current J,
in an antenna 1 generates an electric field E; around another antenna 2,
while a current J5 in the antenna 2 generates an electric field E9 around the
antenna 1 (see Figure 32).

Let us assume, for simplicity, that the antennas are small dipoles with
length [ and cross—section ¢ (Figure 35). This is not necessarily a very un-
realistic assumption, since co—axial to waveguide converters in feedhorns of
existing antennas are often composed of simple dipoles. Then, we can adopt
in equation (117),
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dVv 1

Figure 35: A small dipole with length [ and cross-section gq.

volume element : dV = ql
current  I=|J|q
voltage : U=ElL

And, therefore, equation (117) can now be expressed as:
Uy, =U; Is. (118)

Let us now consider that antenna 1 is fixed at some position and antenna 2
moves from position A to position B, and then to position C' (Figure 36).
Let us denote voltages, generated by the current /; in antenna 1 at positions
A, B, and C of antenna 2, as Uy 4, Uyp, and U;c. We also denote voltages
at antenna 1, generated by the current I of antenna 2 at positions A, B,
and C, as Usa, Usp, and Use. From the reciprocity theorem, as described in
equation (118), we have

Usaly = Upaly,

Upli = Uy,

Uy, = U Is. (119)
Therefore, U; is always proportional to Us, irrespective of the direction of
antenna 2 viewed from antenna 1. Since U; expresses the transmission field
pattern, while U, expresses the reception pattern, of antenna 1, the propor-

tionality U; ox Us proves the equivalence of the transmission and reception
field patterns of an antenna.

2.5 Transmission from Aperture Plane
2.5.1 Aperture Antennas

Let us consider a transmitting horn antenna, such as shown in Figure 37.
Primary wave source (the oscillating current in the co-axial to waveguide
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Figure 36: Fixed antenna 1 and moving antenna 2.

A
(aperture plane)

Figure 37: A horn antenna and an aperture plane.
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converter) is located in the waveguide tube, and generates the electromag-
netic fields in the horn. Then, the electromagnetic fields flow out of the
horn towards the external space, through a plane A. Antennas, having such
planes, are called “aperture antennas”, and the planes, “aperture planes”.
Parabololdal antennas are also typical aperture antennas (Figure 38).

aperture plane

.

Figure 38: A paraboloidal antenna and an aperture plane.

[

In order to consider the field transmission pattern of an aperture antenna,
it is convenient to regard, as if the electromagnetic waves are generated by
some fictitious wave source located on the aperture plane (Figure 39). Such
a “secondary wave source” can be uniquely related to the electromagnetic
field generated by the primary wave source, the actual oscillating current
within the feed horn, and can exactly reproduce the actual field transmission
pattern, as we will see below. The secondary source on an aperture plane
can be interpreted in terms of Huygens and Fresnel’s principle, which states
“each point on a primary wavefront can be considered to be a new source of
a secondary wave” .

2.5.2 Boundary Conditions on the Aperture Plane

If physical properties of a medium are discontinuous at some boundary sur-
face, we solve physical equations on the both sides of the boundary, and then
connect the solutions, using a set of boundary conditions. The boundary
conditions for electromagnetic fields E1, H,, D, B; and E,, H,, D5, B,
in two regions with different e;, p1, o1 and ey, ps, o9, respectively, are well
known: for a boundary surface, which separate the two regions, with a unit
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Figure 39: Electromagnetic wave, transmitted from an aperture antenna
(left), can be represented as a wave generated by an appropriately chosen
secondary wave source on the aperture plane (right).

€2, U2, O2
E:, H:, D2, B:

Region 2

Region 1

€1, M1, O1
E:1, Hi, D1, B:

Figure 40: Regions with different electromagnetic properties.
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normal vector N (Figure 40), we have

N x (H, - H,) = K, (120)
N x (Ey—Ey) = 0, (121)
N-(D,—D;) = %, (122)
N.(B,—B;) = 0, (123)

where K [A m™!] is the surface density of electric current (or “surface electric
current” ), and 3 [A s m™?] is the surface density of electric charge (or “surface
electric charge”).

However, having these usual boundary conditions alone is not sufficient to
fulfil the requirements for the secondary source on the aperture plane, shown
in Figure 39, where E; = 0 and H; = 0 in the inner side of the aperture
plane, while Ey # 0 and H5 # 0 in the outer side of the aperture plane.

In order to overcome this difficulty, we introduce virtual quantities called
“magnetic current density” J,, with unit [V m™2], and “magnetic
charge density” p,,, with unit [V s m™3]. They are supposed to satisfy
“extended” Maxwell equations:

0B
E = —J, ——, 124
V x e (124)
V-B = pu. (125)

and to fulfil following boundary conditions:

N x (Hg — Hl) = 0, (126)
N x (E2 — El) = _Km7 (127)
N-(Dy—D;) = 0, (128)
N.-(By;—B;) = %, (129)

where K, [V m™] is the surface density of magnetic current (or “surface
magnetic current”), and %, [V s m™2] is the surface density of magnetic
charge (or “surface magnetic charge”).
Note that an equation of continuity:
%—FV'JMZO, (130)
ot
is derived from equations (124) and (125).
Before discussing the boundary conditions at the aperture plane, let us
first consider a closed surface surrounding a primary wave source (Figure
41). If we assume that the medium is continuous across the surface, the
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E: H:

primary wave source secondary wave source

Figure 41: A closed surface surrounding a primary wave source (left), which
can be regarded as a secondary wave source with suitable surface currents
and surface charges (right).

electromagnetic fields must be also continuous, i.e. conditions E; = E,,
H,=H,, D, = D, and B; = B, must hold on the surface.

Now, suppose we place surface electric current K, surface magnetic cur-
rent K ,,, surface electric charge ¥ and surface magnetic charge ¥, on the
surface, which satisfy

K =N x H, (131)
K, =N x E, (132)
Y =N-D,, (133)
S, =N - B, (134)

where IN is a unit normal vector, perpendicular to the surface. And then,
we remove the primary wave source, and set the electromagnetic fields inside
of the closed surface to zero, i.e. E; =0, Hy =0, D; =0 and B; = 0. Of
course, the electromagnetic fields become discontinous at the surface, in this
case.

Let us compare boundary conditions at the surface in two cases, one with
the real continuous fields, and another with the fictitious discontinuous fields,
together with the surface currents and the surface charges on the boundary.
They are
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Continuous fields case Discontinuous fields case

N xH;=N x Hq, N xH, =K,

N x Ey =N x E, N x Ey=-K,,

N -Dy=N - Dy, N -Dy =13,

N -B; =N - By, N - By =3Y,. (135)

As long as we consider these relations as boundary conditions at the closed
surface for external solutions of the electromagnetic fields, the left hand side
conditions and the right hand side conditions are the same, in view of the
eauations from (131) to (134). Therefore, the external fields must be iden-
tical for these two sets of boundary conditions. This implies that we can
calculate the external fields, provided that the appropriate surface currents
and surface charges, including both electric and magnetic, are given on the
closed boundary surface.

The same statement must be valid for the aperture plane, if the aperture
plane is the only part of a closed surface surrounding the primary wave source
through which the electromagnetic fields flow out.

Of course, the magnetic current and the magnetic charge do not exist in
the real world. We use them as auxiliary concepts, which help us to fulfil the
requirements at the aperture plane, but disappear in our final results, as we
will see later.

2.5.3 Wave Equations with Magnetic Current and Magnetic Charge

How can we calculate external electromagnetic fields when the surface cur-
rents and the surface charges are given at a surface?

In order to answer to this question, we will first consider the wave gener-
ations from the electric current & charge system, which we have seen before,
and from the magnetic current & charge system, which are new for us, in
parallel.

Electric Current € Charge System — Magnetic Current € Charge System

Maxwell equations

OB OB
VxE=-—r VXE=—Jyn——-
oD oD
H=J+— H-=""
VX T VX ot
V.D=p, V.-D =0,
V- -B =0, VB =p,,.
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Equation of continuity

dp Opm
o VT = otV dn=0.

Electromagnetic potentials

B =V x A, D=-VxA,,
0A 0A,,
E=-Vb— — H=-Vo, — ——.
v ot’ Vem ot
Lorentz gauge
0P 09,
A . A m — )
V-A+ep—— 5 =0, V-A, +ep 5 0
Wave equations with source terms
1 82A 1 9%A,,
214___ . — 211 o — _
v 2 Ot2 wd. Vidm 2 Ot2 €Jm.
1 0P 1 1 0°®,, 1
2@———:—— 2P =——0p.
v 2 Ot? P Vi 2 a2 1 P

Retarded potentials with harmonically oscillating sources

Alr t) = A(r)e ™, Ap(r, t) = An(r)e ™,
E(T‘, t) = E(T)e_i“’t, H(T, t) — H(T,)e—iwt‘
(J=0,J,=0,p=0, and p,, = 0, outside of the source region)

L . ez’k\r—r’\ . € , eik\r—r’ )
AW = £ [ I v At = [0 v

4w |7 —7"|
1 1
H(r)=-V x A(r), E(r)=—-Vx A,(r),
] €
E(r) = z% V x (V x A(r)), H(r) = z% V x (V x An(r)).
Far field solutions in Fraunhofer region
/J etk av’, Tm(n) :/Jm(’r")e*“m"rl av’,
zkr ikr
_re
A("') - 47T r (n)’ Am(r) - 47T r m(”)’
Hr) =i nxtm) Br) = i - n T, (n)
r)=igy oo n), r iy m(n
Br) =i 2 o mx ), He) =i o xnx T (n)]
2\ 1 ’ IVARE "



Since the vector and scalar potentials are related to each other by Lorentz
gauge relations, we considered here wave generations for vector potentials
A(r, t) and A,,(r, t) only, as we did before.

In a case when both the electric current and the magnetic current co—
exist, the electromagnetic fields are expressed by the superposition of two
sets of solutions shown above. In the far field region, for example, we have

) 1 eikr 1
H(r)zzﬁ r.{nxT(n)—Enx[nme(n)]}, (136)
E(r) = —i %er {n x [n x T(n)] + % n x Tm(n)} . (137)

For these spherical waves in the far field region, we again obtain:
n-H=0, and n-E =0, (transversal wave),

and

1
E=-7nxH, and H= Ak x E, (E, H orthogonal).

2.5.4 Radio Wave Transmission from a Surface

Now, how to describe the generation of electromagnetic waves from the sur-
face electronic current K and the surface magnetic current K,, on a surface
of the secondary wave source?

For this purpose, let us consider “a volume density of a surface density” on
a boundary surface. Let a unit normal vector, perpendicular to the boundary

Figure 42: A volume density of a surface density.

sourface, be IN. Let us consider a local rectangular coordinate system at a
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certain point on the surface, which are composed of an axis parallel to IN and
other two axes in a plane tangential to the boundary surface. If we denote
the length along IN direction as [, and an infinitesimal surface area element
on the boundary as dS, then we can express an infinitesimal volume element

at the boundary as
dV =dldS.

Then, we can express the “volume densities” J and J,, of the surface den-
sities K and K,, as

J =Kol -1y,
Jm = Km 5(1 - lO)a (138)
where | = [y corresponds to the boundary surface, and é(x) is the delta

function. Indeed, if we integrate the volume densities through a small volume
AV = Al AS, containing a part of the boundary surface [ = [y, we have

/JdV: /K(S(l—lo)dldS:/KdS,
AV AS

AV

/deV— /Kmé(l—lo)dlds—/KmdS, (139)
AV AS

AV

as expected.
Therefore, using equations (138), we can express the retarded vector po-
tentials as

) ik| T =T’ ] ik|T—T'|
Ar t)=L e*wt/J(r’) c av’ =L e*me(r’) c as’,

4 |7 —7r'| 4m |r—7r"]
ikl T — r\ oikIT =T’
A ( _ 7zwt/J ,,, : /_ 7“")th 7' - S
|7'—7'| r—r|(140)

For the far field solutions, we have

n) _ %K(,r/)efikn-’r" dS/,

- Y{Km(r’)e*“m"" s’ (141)
i(kr—wt)
I e
A(r, t) = — T(n),
r1) = L),
i(kr—wt)
TNz
A, (r 1) = & T, (n), 142
)= L ), (142
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1 ei(kr—wt) 1
H(r,t):iﬁ " {nxT(n)—Enx[nme(n)]},
7 ei(krfwt) 1
E(r, t)=—i >, {n X [nxT(n) + 7 X Tm(n)} 7 (143)

where m is a unit vector along the direction of the propagation of the spherical
wave, as before.

Comparing these equations with equations (136) and (137), we see that
their forms are the same, and only difference is in the replacement of the vol-
ume integrals in the expressions of T'(n) and T',,,(n) by the surface integralas
in equations (141).

Remembering here that the surface electric current and the surface mag-
netic current must equal to

K — N x H,,
Km:—NXEl,

on the boundary surface with a unit normal vector IN, in view of equations
(131) and (132), we can rewrite T'(n) and T',,(n) in equations (141) as

T'(n)= ]{K(’I")ef“m'rl ds’ = ?{N x H (1) #7487,
T"n(n) = %K'm(r/)e_ikn.r/ dS/ = — %N X El(',‘/)e—ikn-”’/ dS/ (144)

Now in this last expression, in the right hand side of equation (144), we no
longer have the fictituous magnetic current, and the external electromagnetic
fields in equations (143) are completely determined by the actual electromag-
netic fields on the boundary surface. This is a clear expression of Huygens
and Fresnel’s principle that the wave front becomes the wave source.

2.5.5 Radio Wave Transmission from an Aperture Antenna

Let us consider an aperture antenna, with an aperture plane much larger in
size than the wavelength. It is then possible to control the primary wave
source in such a way that harmonically oscillating electromagnetic fields on
the aperture plane, H, and E,, satisfy conditions:

N-H,=0, N-E,=0, (parallel to the aperture plane),
and

1
H,= 7 N x E,, (mutually orthogonal), (145)
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where IN is the unit normal vector, perpendicular to the aperture plane
(Figure 43). This corresponds to the case when the electromagnetic fields on

Figure 43: Electromagnetic field on an aperture plane.

the aperture plane are close to plane waves propagating towards the direction
perpendicular to the aperture plane.

We now apply these relations to calculate directional pattern vectors T'(n)
and T',,(n) in equations (144). Generally speaking, the surface integrals in
equations (144) must be taken over a closed surface, surrounding the primary
wave source. However, as we saw earlier, the closed surface can be replaced
by the aperture plane A, if the aperture plane is the only part of a closed
surface through which the electromagnetic fields flow out. This condition is
usually fulfilled in aperture antennas with aperture sizes much larger than
the wavelengths (Figure 44).

Figure 44: In an aperture antenna with aperture size much larger than the
wavelength, most of the generated electromagnetic fields flow out through
the aperture plane A. In this respect, the contribution of other portion S
of the closed surface, surrounding the antenna, is negligibly small compared
with that of the aperture plane A.
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Therefore, we can rewrite equations (144) as

:/N x Hye M7 48 = % /N x (N x Ep)e T 48’
A
T, (n) = — / N x E, e 17 45" (146)

where, in the upper equation, we used an assumed property of the electro-
magnetic fields on the aperture plane, given in equations (145).

Now, we can express the far field solution of the electric field, transmitted
from an aperture antenna, using one of the equations (143)

1 i(kr—wt) ) ,
E(r, t)=—i 2—)\67 /nx nXx[Nx(NxE,)|-NxE,}e *7 48"
r
A

(147)
For large aperture antennas, the electric field in the far field region has finite
strength in the direction n, which is close to the direction IN perpendicular
to the aperture plane. Therefore, we approximately take m = IN everywhere,
except for in the argument of the exponential function. Then, using a for-
mula of the vector algebra in equation (14) and one of the conditions on the
aperture plane, given in equations (145), we obtain an equation:

1 ez(kr —wt) ,
E(r.t) = B — / E (r') e * T 4S8’ (148)
A

which describes a relationship between electric fields on an aperture plane
and in a spherical wave in the far field region.

2.5.6 Aperture Illumination and Field Pattern of an Aperture
Antenna

In equation (148), the directional characteristics of the aperture antenna are
solely determined by the integral:

/ E.(r")e "7 4s'.

Regarding the distribution of the electric field E,(r') on the aperture plane,
we assume that the electric field is parallel, and keep a constant direction,
everywhere (Figure 45). This corresponds to a case of the linearly polarized
oscillation. If the actual field distribution is a superposition of different po-
larization components, for example, a circularly polarized oscillation, which
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Figure 45: Harmonically oscillating electric field on the aperture plane, keep-
ing a common field direction.

can be decomposed into two linearly polarized oscillations along two mutu-
ally perpendicular directions, this discussion is valid for a linear polarization
component along a certain direction.

Let us express, in this case, the electric field on the aperture plane as

E,(r') = Eyg(r'), (149)

where E is a constant real vector, and g(7’) is a complex (in general) function
of the position on the aperture plane. The function g(r’) is called “aperture
illumination”. This shows how the primary wave source (for example, a feed
horn) “illuminates” the aperture plane. Using the aperture illumination, we
can rewrite equation (148) in a form:

i(kr—wt)

E(r, t) = i EgA——— f(n),
where
f(n) = / o) kT dAiz (150)
A

The non—dimensional function f(n) is the field pattern of the aperture an-
tenna in the far field region, which shows the directional characteristics of
the generated electric field.

Taking into account that k£ = 27/A, and formally extending the area of
the integration to an infinite plane, by just assuming that g(r') = 0 outside
of the aperture plane A, we obtain, from equation (150),

/ !/
—i2rn- Lo ds ‘

fm) = [ gwye s T (151)

This equation shows that the aperture illumination g(r’) and the field pattern
in the far field region f(n) of the aperture antenna form a two dimensional
spatial Fourier transform pair.
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2.5.7 Power Pattern of an Aperture Antenna

We can now derive the power pattern of an aperture antenna by calculating
time averaged Poynting vector, as we did for the Hertz dipole.

We saw in equation (97) that the Poynting vector S of the spherical wave
is described as

1
S:ETXHT:§n|ET|2,

where FE, is the real part of the complex form of the electric field, which
represents the real physical quantity. Introducing the amplitude | f(n) | and
the phase ¢ of the complex field pattern f(n), we have

f(n) =| f(n)] €. (152)

Then, from equation (150), we obtain
E,=RE(r,t)=Ej\ RN sin(kr — wt + ¢). (153)
r
Since the time-averaged squared sine function always gives
. 9 1
(sin®(kr — wt + ¢)) = 5

where ( ) denotes time averaging, we have

1 A2
(151 =5,1Eo b 2l f(n) i (154)
The non-dimensional term | f(n) |* in equation (154) characterizes direc-
tional pattern of the transmitted power, and could be regarded as power
pattern P(m) in the far field region of an aperture antenna, though some-
times (| S |) itself is called power pattern. In practice, “normalized power
pattern” P,(n), which is obtained by dividing the power pattern by its
maximum value, is used more frequently than the power pattern. Thus, the
normalized power pattern in the far field region of an aperture antenna is
given by a formula:
P() _ | fn) [
Poae | foaar [

which is not affected by the difference of the two definitions of the power
pattern, mentioned above.

Po(n) = (155)
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2.5.8 Main Lobe, Sidelobes, HPBW and BWFN

A typical normalized power pattern of an aperture antenna is illustrated in
Figure 46. Left panel shows a rectangular plot, with horizontal axis show-
ing angle from the “aperture axis” in radian. The aperture axis is an axis
perpendicular to the aperture plane, which is usually parallel to the “beam
axis”, i.e., the direction of the maximum power pattern. Right panel shows
a polar plot, which gives more realistic view of the pattern shape.

Aperture axis

Main lobe
1
09
=
Lo Main lobe
@
o o7l
g 06 ;
8 .| HPBW
'c 1|
.g ol HPBW
©
E 03[
8 02
o1 BWFN Side lobes L
- - w1 BWEN
°r 05 0 05 1 Sl
angle from aperture axis Side lobes

Figure 46: A normalized power pattern of an aperture antenna in a rectan-
gular plot (left) and in a polar plot (right).

In both panels, a large main lobe (or main beam) is prominent. There
are small sidelobes in both sides of the main lobe.

Two quantities are frequently used as measures of the width of the main
lobe, which is an important characteristic of an aperture antenna. One is
“full half power beam width”, or HPBW, which stands for the twice of
the angle of a direction, where the power pattern takes a half of the maximum
value, from the aperture axis. Another is “full beam width between first
nulles”, or BWFN, which stands for the twice of the angle of a direction,
where the power pattern drops to zero between the main lobe and the first
side lobe, from the aperture axis (Figure 46).
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2.5.9 Uniformly Illuminated Rectangular Aperture Antenna

Let us consider, as one of the simplest examples of aperture antennas, a
rectangular aperture antenna with an aperture plane located in zy plane,
which is uniformely illuminated as:

1 for|z|<% and [y|< 2,

g9(z.y) = (156)

0 else,

(see Figure 47).

N n

A

I% /y
= _—

‘X/Ly

Figure 47: A rectangular aperture antenna.

From equation (151), the field pattern in the far field region f(m), in a
direction of a unit vector m, with components n, and n, in the zy-plane, is
expressed in this case as

Ly Lg
R e S el Al el o <
Ly L
_ sin(mng Lo /A) sin(mn, Ly /A) (157)

™, TN,

Since this function takes the maximum value (L,/\)(L,/A) when n = N,
where IN is the unit vector normal to the aperture plane, and, therefore,
n, = 0, n, = 0, the normalized power pattern, as given in equation (155), is

_ @) P [sin(mng Ly/X) sin(rny Ly /A) ]

— 1
| finae |2 gLy /A 7y Ly /A (158)

Bu(n)
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Full beam width between first nulls and full half power beam width of such
an antenna are

A A o A A
BWFN—Q(L— and L—) (rad) = 114. 6(L— and —),

x Yy x L Y
and

A A A A
HPBW = (.88 (L_a: and L—y) (rad) = 50.°4 (L_a: and L—y) (159)

respectively.

2.5.10 Circular Aperture Antenna

Now let us consider a circular aperture antenna with diameter D, as shown in
Figure 48. Let us assume an axisymmetric illumination around the aperture

n

\\
<

Figure 48: A circular aperture antenna.

axis, which is directed towards a unit vector IN, perpendicular to the aperture
plane, and let us choose a coordinate system, in which a directional unit
vector m and a radius vector v’ within the aperture plane are given as

n = (—u, 0, 1), (160)

and
' = (Apcos o, Apsin g, 0), (161)
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where A is the wavelength, and p and ¢ are radial and azimuthal variables.
If we denote the axisymmetric aperture illumination as

g(r") = g(p), (162)

then, according to equation (151), the field pattern at the direction n is
expressed in a form:

21 o0

)= | [ glp) e pdpdg. (163)
/]

Since Bessel function of the zeroth order Jy(z) is defined as

2
1 .
Jo(z) = =— [ €7 %, (164)
27r0/
we have .
f(u) = 2 / 9(p) Jo(2mup)pdp. (165)

0

Therefore, according to equation (155), the normalized power pattern is

2

}OQ(P)Jo(%rup)pdp
e ' (166)
bf 9(p)pdp

We consider the simplest case of uniform illumination:

1 for p< 2

9(p) = . (167)
0 else,

Then the normalized power pattern in equation (166) is reduced to

2

D/2A 2
f J0(27Tup)pdp 02 TuD /A
Py(u) = |~ D/2x = | 222 / Jo(2)zdz| . (168)
| pdp 0

0
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From the recurrence formula of Bessel function:
d
E{Z"Jn(z)} =2"J, 1(2), (169)

we have
xr

" Jn(x) = /Z”Jn_l(z)dz,
0
and hence, in a particular case of n =1,

T

/Jo(z)zdz = zJy(x).

0

Inserting this formula into equation (168), we obtain the normalized power
pattern of the uniformly illuminated circular aperture antenna in the far field

region:
2\ ruD\1?
- [ 250 (2] o

Figures 49 and 50 show normalized power patterns (left pannel) and field
amplitude pattern | f(u) | / | finae | (right panel) of a uniformly illuminated
circular aperture antenna in rectangular and polar plots. In the rectangular
plots (Figure 49), the horizontal axes show offset angle from the aperture
axis normalized by \/D.

Figure 51 shows three—dimensional rectangular and polar plots of the
normalized power pattern and the field amplitude pattern of the uniformly
illuminated circular aperture antenna.

From numerical values of Bessel function J; (), we obtain full beam width
between first nulls and full half power beam width of the uniformly illumi-
nated circular aperture antenna as

BWEN = 2.44% (rad) = 140° %,

and

HPBW = 1.02 i (rad) = 58.04i (171)
D D’

respectively.
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Normalized Power Pattern of Circular Aperture Antenna Normalized Field Pattern of Circular Aperture Antenna

1 T T T T 1 T T T T
08 g
0.6 - 4
0.4 ~
02 q

o . N . Py .

-4 2 0 2 4 -
Otfset Angle Normalized by lambda/D Offset Angle Normalized by lambda/D

Figure 49: Rectangular plots of normalized power pattern (left) and field am-
plitude pattern (right) of a uniformly illuminated circular aperture antenna.
Horizontal axes show offset angle from the aperture axis normalized by A/D.

Normalized Power Pattern of Circular Aperture Antenna Normalized Field Pattern of Circular Aperture Antenna
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Figure 50: Polar plots of normalized power pattern (left) and field amplitude
pattern (right) of a uniformly illuminated circular aperture antenna.
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Figure 51: Three-dimensional rectangular (top) and polar (bottom) plots of
the normalized power pattern (left) and the field amplitude pattern (right)
of a uniformly illuminated circular aperture antenna. Sidelobes are hardly
seen in the polar plot of the normalized power pattern.
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2.6 Beam Patters of Aperture Antennas

So far, we have discussed and derived field and power patterns of aperture an-
tennas in the transmission mode. Because of the equivalence of field patterns
in transmission and reception, which we saw earlier, the field transmission
pattern must be the same with the field reception pattern. In the reception
case, the field pattern is often called ‘voltage reception pattern’, as describing
the magnitude of the received voltage as a function of direction.

Since the transmitted power is proportional to the square of the electric
field, and the received power is proportional to the square of the received
voltage, the power reception pattern must also be equivalent to the power
transmission pattern.

The antenna beam pattern is a general concept, which means either
the power pattern or the field (or voltage-reception) pattern, depending on
the context.

2.6.1 Antenna—Fixed Coordinate System

paraboloid
axis

Figure 52: Antenna-fixed coordinate system.

For further convenience, let us introduce an ‘antenna—fixed coordinate
system’ for a paraboloidal antenna.
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As the origin of the coordinate system, we choose the center of the
paraboloid surface of the main reflector. Then, let us take the aperture axis,
or the symmetry axis of the paraboloid, as the polar axis z, and choose the
x and y axes towards directions perpendicular and parallel to the elevation
axis, as shown in Figure 52. Finally, let us denote a given direction in the
sky by an angle from the polar axis 6, and an azimuthal angle ¢ measured
from the z—axis towards the y—axis.

Then, the field pattern and power pattern can be described as functions
of these angles: such as f(6,¢), and P(0,¢). Hence, the normalized power
pattern can be described as

_P0.9) _|f0.9)
Pma:r | fmaa; |2

2.6.2 A Useful Formula: HPBW =~ \/D

P,(0,0) (172)

From the two simple examples of the aperture antennas, which we saw earlier,
it is evident that HPBW = X/D (see equations (159) and (171)). This is
generally valid for a wide variety of aperture antennas with realistic aperture
illuminations. Therefore, the ratio A\/D is often used as a measure of the
beam width, or the angular resolution, of radio telescope antennas (table 1).

diameter D | wavelength A | frequency v | A/D
6 m 37.5 mm 8 GHz | 0.°36
10 m 7.0 mm 43 GHz | 0.°04

21 m 2.3 mm 129 GHz | 0.°0063

45 m 2.0 mm 150 GHz | 0.°0025

Table 1: Beam widths (A\/D ~ HPBW) of antennas with different aperture
diameters, observing at different frequencies.

Of course, it is not an easy task to direct a huge radio telescope with 45
m diameter towards an astronomical object with an accuracy much better
than 0.0025 degree!
2.6.3 Distance to Fraunhofer Region

As we saw earlier, the antenna beam pattern is a function of distance from the
antenna in the Fresnel region, or in the near field, as schematically shown in
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Figure 53: Variation of the electric field amplitude pattern with distance
from the antenna (S. Adachi, Electromagnetic Wave Engineering, 1985).

Figure 53 (S. Adachi, Electromagnetic Wave Engineering, Korona-sha, 1985,
in Japanese). However, in the Fraunhofer region, or in the far field, the beam
pattern becomes almost independent of the distance, as illustraited by the
rightmost curve of Figure 53.

For a paraboloidal antenna, we can use the aperture diameter as the char-
acteristic size of the wave source region in the Fraunhofer condition given in
(89). Therefore, the ‘distance to the Fraunhofer region’ rg for a paraboloidal
antenna, with the aperture diameter D, receiving or transmitting a radio
wave with wavelength A, is given by

The Fraunhofer condition » > rp can be graphically illustrated as the
condition where the difference between the distance from a distant point p
to the edge of the aperture 7/, and that to the center of the aperture r,
must be much smaller than A/16 (Figure 54). This could be interpretted
as a condition, that a spherical wave coming from the distant point can be
practically approximated as a plane wave.

Also, rr is equal to the twice of the distance r, to a point, where the
width of the far—field beam, measured at HPBW, becomes equal to the width
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aperture plane

Figure 54: Distance to the Fraunhofer region as a condition for the plane
wave approximation of the received wave.

T'w

Figure 55: Distance to the Fraunhofer region as a condition for predominance
of the far—field beam in the transmitted wave.
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of a circular cylinder with the diameter of the aperture D, i.e.,

A D*  rp
—7ry =D, and, hence, 7,=—=—,
D ’ ’ A 2
(Figure 55). This could be interpreted as a condition that most of the trans-
mitted power is confined within the far—field beam.

Table 2 shows typical examples of the distances to the Fraunhofer region.
Can we measure the far—field patterns of our antennas on the ground?

D A re=2D%/\

6 m 3.8 cm (8 GHz) 1.9 km
10 m 7 mm ( 43 GHz) 28.6 km
2lm | 2.3 mm (129 GHz) 383 km
45 m 2 mm (150 GHz) 2025 km
2300 km | 7 mm ( 43 GHz) 1.51 x 10*2 km
VLBI = 0.16 light year

Table 2: Distances to the Fraunhofer region.

2.7 TIllumination Taper (or Gradation)

We can modify antenna beams by changing the electric field distribution on

subreflector

main reflector
feed horn

Figure 56: Aperture illumination.

the aperture plane (the illumination pattern). Therefore, in order to realize
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a desired beam pattern, we can design a feed horn, so that the horn suitably
‘illuminates’ the aperture plane (Figure 56).

Generally speaking, it is desirable to have as narrow a main lobe as pos-
sible and sidelobe levels as low as possible. However, the two requirements
are somewhat contradictory to each other, as shown in Figure 58.

As we saw earlier, the aperture illumination pattern (distribution of the
electric field on the aperture plane) and the far—field pattern form a two—
dimensional spatial Fourier transform pair. Therefore, the beam patterns
are derived from the illumination patterns by simple Fourier transformation.

The main lobe is the narrowest when the aperture illumination is uni-
form, as shown in Figure 58. However, the sidelobe level is rather high in
the uniform illumination case. On the other hand, if we apply a Gaussian
illumination, we get fairly low sidelobe levels, but the main lobe becomes
broader. This kind of non uniform illumination, which is usually stronger
in the central part of the aperture, and weaker in the outer parts, is called
‘tapered’ or ‘gradated’ illumination.

main lobe

Figure 57: Why is strong tapering required for radio telescopes?

For radio telescopes, which receive very weak signals from astronomi-
cal radio sources, the thermal radiation of the ground — with temperature
T ~ 300 K — picked up by the sidelobes may seriously degrade the signal—
to—noise (S/N) ratio. Likewise, the ground thermal radiation received from
the outside of the main reflector edge (which is called ‘spillover’ in the trans-
mission sense) is also quite harmful (Figure 57).

Therefore, rather strong tapering is required for radio telescopes, although
this of course means that we have to sacrifice some portion of their aperture
areas as ‘ineffective’ areas.
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2.8 Spectral Flux Density Received by an Antenna
Beam

We defined earlier that the spectral flux density S, is a portion of the radi-
ation energy from an astronomical source incoming through a cross section
of unit area, per unit frequency bandwidth, and per unit time. The spectral
flux density was described, through the monochromatic intensity 1,,(6, ¢), by
an integral over the source solid angle €2 :

S, = // I,(0,¢) cosOsin b db do,
0

where the cosf term arose due to a geometrical effect corresponding to the
projection of a unit area onto the plane perpendicular to an incoming ray
(left panel of Figure 59).

Figure 59: Flux density as received by a unit area in space (left), and the
effective flux density as received by a unit area on the aperture plane of a
directional antenna (right).

On the other hand, an antenna with a normalized power pattern P,(0, ¢)
receives the radiation from the radio source in proportion to P, (0, ¢), which
reflects not only the geometrical effect but also the electromagnetic effect.
Therefore, the portion of the radiation energy received by a unit area on the
antenna aperture plane, per unit frequency bandwidth, and per unit time, is
described by

s [ Q/ P.(6,) 1,(6, ¢) sin db do, (174)
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where 6 and ¢ are the angular variables in the antenna—fixed coordinate
system (right panel of Figure 59). We call this ‘intensity collected by the
antenna beam’ S, in equation (174) the ‘effective flux density’. The effective
flux density is equal to the usual total flux density when the angular size
of the source is much smaller than the antenna beam width, and when the
beam is exactly directed towards the source. Otherwise, the effective flux is
smaller than the total flux. Henceforth, we use the word ‘flux density’ in the
sense of the effective flux density, as far as radio wave reception with radio
telescope antennas is concerned.

3 Antenna Characteristics

The performance of a radio wave antenna is characterized by a number of
important parameters which usually figure in the major specifications of the
antennas (an example of antenna specifications is shown in table 3).

Figure 60: Design drawing of a 21 m antenna.

We will introduce major performance characteristics of antennas, and
discuss meanings of numbers in the specifications. We will also discuss ways
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Optics

Cassegrain focus, central feed type

Primary diameter 21 m
Primary focal length 7m
Secondary diameter 2 m
Secondary focal length | 37 cm

Mechanical operation

Fast switching up to 2.5° separation

Azimuth range +270°
Elevation range 0° —91°
Az max. slew speed 3°/s

El max. slew speed 3°/s

Az max. acceleration | > 1°/s?
El max. acceleration > 1°/s?

Surface accuracy

Appropriate for reception at 150 GHz

Panels

65 pm rms

Total

150 pm rms (10 m/s wind)

Pointing performance

Appropriate for reception at 150 GHz

Pointing accuracy

0.001° rms (10 m/s wind)

Az natur. freq.

2.5 Hz

El natur. freq. 2.5 Hz

Subref. spar nat. freq. | 5 Hz

Az El axes offset 3 mm

Az FEl orthogonality 0.01°
Operational loads Temperature -20°C  40°C

Wind 10 m/s
Survival Loads Wind 90 m/s

Seismic acceleration

0.2 G horiz., 0.1 G vert.

Table 3: An example of antenna specifications.

90




to estimate important charactersitics such as aperture eficiency, antenna gain,
and maximum observable frequency, on the basis of the specifications.

3.1 Directive Gain G(6, ¢)

The directive gain G(6,¢) of an antenna is defined in terms of the power
pattern P(0,¢), in the antenna-fixed coordinate system with the angular
variables 6 (angular distance from the symmetry axis) and ¢ (azimuthal
angle in the aperture plane), as

P0.¢) _ 4nP(0,9)

C0.6) = =57 = ThG o (175)
where )
P=— ¢ P(0,¢)d
41

is the mean value of the power pattern averaged over all directions.

Why is this quantity called directive “gain”? In the transmission case,
the directive gain is a quantity describing how well your antenna can emit the
radio signal of a given total power towards the direction 6 and ¢, compared
with an idealized antenna which would emit the same power of the radio sig-
nal isotropically. In the reception case, if you observe a point radio source at
0 and ¢, you would receive G(0, ¢) times stronger power with your directional
antenna than what you would receive with an idealized isotropic antenna. In
both cases, you ‘gain’ stronger signal with the directional antenna, compared
with the idealized isotropic antenna (Figure 61).

P(6,9)

1171 power pattern of
directional antenna

power pattern of
isotropic antenna

Figure 61: Directive gain: “gain” of a directional antenna compared with an
idealized isotropic antenna.
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3.2 Beam Solid Angle )4

The beam solid angle €24 is a measure of the angular extent of the antenna
beam, as defined by the equation :

P(6,¢)dS)
0,= § B0.ga0 = IOAE_ 4P (176)
Pm(ll’ Pma:(:
where P, (60, ¢) is the normalized power pattern :
_ P(8,9)
P,(0,0) = P

If we display the antenna power pattern in a rectangular plot, where the x
and y— coordinates are angles in two perpendicular directions in the aperture
plane, and if we approximate the solid angle by an area in this xy— plane,
the beam solid angle is equal to the cross—sectional area of a cylinder which
has a height of P,,.., and the same “volume” as the power pattern in this
rectangular coordinate system (Figure 62).

Figure 62: Beam solid angle as the cross-sectional area of a cylinder with a
height of P,,.., and the same volume as the antenna power pattern in this
rectangular plot of the beam.

3.3 Main Beam Solid Angle ),

The main beam solid angle is defined in a similar way to the beam solid
angle, but now the integration covers the main lobe only:

Qay = / Po(0, ¢)dC. (177)

main lobe
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In the rectangular plot we saw above, the main beam solid angle is equal to
the cross—sectional area of a cylinder which has the height of P,,.., and the
same volume as the main lobe of the power pattern.

3.4 Main Beam Efficiency 7y,
The main beam efficiency (or simply the beam efficiency) is the ratio of the
main beam solid angle to the beam solid angle :
O
=—. 178
v 04 (178)

nar is close to 1 if the antenna has a sharp main lobe, and sufficiently low
sidelobe levels.

3.5 Directivity, Maximum Directive Gain, or “Gain”
D

The directivity is the maximum value of the directive gain, which is usually
obtained in the direction of the symmetry axis :

Prae 4w

D:Gmam: - 5
P Oy

(179)

The directivity describes how much a directional antenna “gains” at the
beam center, as compared with the idealized isotropic antenna. This is an
important antenna parameter which is also called the “antenna gain”, or
simply “gain” (not to be confused with the “directive gain” G(6, ¢)).

The antenna gain is usually expressed in decibels (dB) :

P
D (in dB or dBi) = 10 log;o( n;)aw), (180)

where logyo is the common (i.e. base 10) logarithm, and “dBi” here is the
same as dB but stresses that the comparison is made with the isotropic case.

3.6 Antenna Polarization
3.6.1 Some Notes on Polarization of Electromagnetic Wave

Since an electromagnetic wave is a transverse wave, as we saw in the discus-
sions of the plane and spherical waves, the electric or magnetic field vector
in the wave oscillates along a certain direction within a plane which is per-
pendicular to the direction of the propagation, and moves with the wave
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polarization plane of electric field

\/ | Avsssasdipbasses

Figure 63: An electromagnetic wave as a polarized wave.

(Figure 63). Such a wave is said to be “polarized”. There are two degrees
of freedom in the oscillation within the plane. Therefore, any wave with a
certain direction of polarization can be expressed as a linear combination
of two independent polarization components. Such independent components
could be two linearly polarized components in mutually orthogonal direc-
tions (horizontal and vertical, say) or two circularly polarized components
with mutually opposite rotational senses (RHCP : Right Hand Circular Po-
larization, and LHCP : Left Hand Circular Polarization), as shown in Figure
64.

- horizontal LP

At R4
(o AN

§ LHCP / RHCP
» y vertical LP y

Figure 64: Representation of a polarized wave as a linear combination of two
independent linear (left), or circular (right), polarization components.

3.6.2 Polarization characteristics of Antennas

Any antenna (or, better to say: any waveguide to coaxial-cable converter)
can receive or transmit only one independent component of the polariza-
tion. This can be generally understood in the following way. Although the

94



electromagnetic wave in free space has two degrees of freedom in the polar-
ization, the oscillation of the voltage or the current in a circuit is essentially
one—dimensional. Therefore, we have to lose one degree of freedom, anyway.

For example, if the waveguide to coaxial-cable converter consists of a
simple dipole, it receives or transmits only one linear polarization component,
with the direction of oscillation parallel to the dipole. If the converter is a
helix, on the other hand, it receives or transmits only one circular polarization
component. In general, an antenna is designed to receive or transmit a
certain polarization component. Therefore, an antenna could be designed,
for example, for linear horizontal polarization, or for RHCP, etc.

Of course, the antenna polarization can be relatively easily changed by
adjusting the waveguide to coaxial-cable converter or using special optical
devices. Moreover, one can install two or more waveguide to coaxial-cable
converters, and following receiving systems, in a common main reflector and
sub reflector system in order to simultaneously receive or transmit the two
polarization components by “a single antenna” (which, in actuality, contains
two antennas in strict Kraus’s sense).

The specification of the antenna polarization performance is usually given
as ‘polarization isolation’. This shows how well an antenna can receive one
polarization component, to which the antenna is designed, without being con-
taminated by another component, which may arise due to some inperfection
in the antenna optical system.

In a majority of radio sources, two independent polarization components
are only very weakly correlated (“unpolarized sources”). Therefore, it is quite
important for VLBI observations that participating antennas observe radio
sources in the same polarization mode, except in the cases when the weak
correlation between different polarization components itself is the target of
study (“polarization observation”). Wrong setting of polarization has been
one of major sources of failures of VLLBI observations.

It is not easy to use linear polarization antennas for VLBI observations,
because the directions of the linear polarization fixed to the antennas usually
correspond to different sky directions, and the difference varies in time as
the Earth rotates, for antennas located on different points of the Earth.
Therefore, the VLBI antennas in the world are mostly designed for reception
of circular polarization components. In geodetic VLBI, RHCP has been
conventionally used.

3.7 Effective Aperture A,

Let us consider that the randomly polarized (or ‘unpolarized”) radio wave is
incident to a radio telescope antenna. The word “unpolarized” here means

95



that all kinds of waves with different polarization directions are randomly
mixed up so that in average no net predominant polarization component is
left. Radio waves from most of the astronomical sources are known to be
practically unpolarized in this sense.

If an antenna obtains a certain amount of power per unit frequency band-
width W, by observing a randomly polarized radio source with the effective
flux density S,, the effective aperture A, of the antenna is defined by an
equation :

1
W, = 545, (181)

where a factor 1/2 implies that the antenna is able to receive only a half of
the power alloted to one independent component of the polarization.

phase error due to
surface roughness

Figure 65: Factors reducing the effective aperture.

The actually received power in equation (181) is smaller than the incident
power W

|
Wl, - §AQSV,

for reasons shown in Figure 65, where A, is the geometrical aperture which
is equal to mD?/4 for a circular aperture with diameter D. Therefore, the
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effective aperture is always smaller than the geometrical aperture.

Ao < A,

3.8 Aperture Efficiency 74

The ratio of the effective aperture A, to the geometrical aperture A, is called
aperture efficiency and is usually denoted by 74.
Ae
m=4t (182)
The aperture efficiency 14 is always smaller than 1 mainly due to
e the strong illumination taper (or gradation)
e the phase error due to the roughness of the antenna surface
e the blocking by the subreflector and the stays
e the spill over from the subreflector
e the Ohmic dissipation on the surface
as schematically illustrated in Figure 65.

3.9 Effective Aperture and Beam Solid Angle

The effective aperture A, and the beam solid angle 24 are related with each
other through the wavelength A by a simple equation :

Ay = N2, (183)

Let us prove the relation assuming a simple case of the thermodynamical
equilibrium. Consider a system consisting of an antenna and a surrounding
blackbody, and assume that the system is in a complete thermodynamical
equilibrium with temperature 7' (Figure 66).

Since the intensity I, of the blackbody radiation in the Reileigh—Jeans
approximation :

L ="kT =22 (184)

is essentially isotropic in this case (I, = const for any direction), the effective
flux density incoming to the antenna can be expressed as

2kT
Suzfpn(eaé)]VdQ:]VQA:VQA' (185)

Therefore, the power per unit frequency bandwidth W, received by the an-

tenna is ) T
WI/ == §ACSI/ = AeﬁQA- (186)
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ack body
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Figure 66: An antenna in a blackbody cavity.

On the other hand, the power L, transmitted by the antenna per unit fre-
quency bandwidth due to the noise in the antenna receiving system, which
is in the equilibrium with the temperature 7', is equal to

L, = kT, (187)

according to the Nyquist theorem (H. Nyquist, Phys. Rev., 32, 110-113,
1928). Now, the received power must equal the transmitted power in the
detailed balance of the thermodynamical equilibrium. Therefore,

AeQA
\2
Although we derived equation (183) in the thermodynamical equilibrium

case, the resultant equation does not contain any thermodynamical quantity.
Therefore, the equation must generally hold in other cases as well.

L,=w, —

—1 — AQu =\ (188)

3.10 Directivity D and Aperture Efficiency 74

As we saw earlier, the directivity (or gain) D is related to the beam solid
angle Q4 by equation (179) :
Am

D=—.
Q4
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Now using equation (183) (A.Q4 = A?), we can transform the above equation
to

D = A7t = A, =L, (189)

where A, and X\ are the geometrical aperture and the wave length, respec-
tively.
For a circular aperture antenna with diameter D, we have

D= (%)2. (190)

If the aperture efficiency ny4 is kept nearly constant, we could obtain higher
gain with larger diameter and higher frequency. In actuality, however, it
becomes increasingly difficult to realize the high aperture efficiency as we go
to the higher frequency and/or to the larger diameter.

In performance descriptions of antennas, the gain of an idealized antenna

with 100 % aperture efficiency:
D\
— 191
(%) (191)

is often described as ‘100 % gain’, and usually given in dB. The 100 % gain
can be directly calculated from the aperture diameter D and the observing
wavelength A. Therefore, if we can estimate the aperture efficiency n4, we
can easily get a value for the gain D, as we will examine later.

3.11 Illumination Taper and Aperture Efficiency

Rather strong illumination taper is required in radio telescope antennas to
avoid undesired ground pickups due to the sidelobes or the spill over from the
main reflector. The strong taper lowers the sidelobe level. At the same time,
however, it increases the beam width as we saw in Figure 58. The increase
of the beam width and therefore of the beam solid angle 24 decreases the
effective aperture A, as required from equation (183) :

)\2

A=
Q4

In general, the illumination taper improves the main beam efficiency n,,
but deteriorates the aperture efficiency 74. The illumination taper is often
the largest factor reducing the aperture efficiency of radio telescope antennas
to the level of 50 — 60 %.
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3.12 Surface Roughness and Aperture Efficiency

The surface roughness is another important factor which determines the aper-
ture efficiency of radio telescope antennas.

Suppose that a real main reflector deviates from an ideal paraboloid due
to the roughness of its surface. Then, the rays, which originally formed a
wave front of equal phase in a plane wave, and were reflected at different
points on the main reflector, reach at the focus with different path lengths,
and, therefore, with different phases, due to the surface roughness. Thus, the
rays reached at the focus are summed up with different phases. Therefore,
the maximum power pattern P,,,, at the center of the main lobe becomes
somewhat lower than the one in the ideal paraboloid case, with perfectly
smooth surface. On the other hand, the averaged power pattern P must not
change by the surface roughness, since the total power must be conserved.

Therefore, the directivity D = P4,/ P, and the effective aperture A, =
DA?/(47), are reduced, compared with the ideal case. Because of the same
reason, the reduced power in the main lobe must be balanced by an increased
power in the sidelobes.

Thus, the surface roughness deteriorates both the aperture efficiency 74
and the main beam efficiency 7.
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Figure 67: Phase error due to the surface roughness.

Let us calculate how the aperture efficiency is reduced due to the sur-
face roughness of the main reflector, again in the transmission mode. For
simplicity, we ‘stretch’ the actual paraboloid surface and treat it as a plane,
parallel to the aperture plane, and regard that the rays are coming from a
direction, perpendicular to the ‘main-reflector plane’, as shown in Figure 67.
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This implies that a subreflector, and a primary feed, must be also stretched
to a ‘plane’. If we adopt such a simplified scheme, all rays transmitted from
a primary feed reaches at the aperture plane with the same path length, and,
therefore, with equal phase, if the ‘main reflector plane’ is ideally smooth, just
as in the aperture plane of an ideally smooth paraboloid. Such an approxi-
mation is permissible in the present discussion, focused only on the effect of
the randomly distributed surface roughness in the beam center direction.
Suppose that a ray is reflected at a point of the main reflector surface, at
a distance € apart from the ideally smooth surface, as shown in Figure 67. In
this case, the path length of the ray differs from the one in the ideal case by
2¢, when it reaches at a point 7’ of the aperture plane. Therefore, we have a

phase error of
e

A
in the electric field E,(r') on the aperture plane, where k and A are the wave
number and wavelength, respectively, as before.
Let us assume that the phase error §(7') is randomly distributed over the
aperture plane with the Gaussian probability density:
1 52
() = e 27 193
0)= e i, (193
where 0% = (§?) is the dispersion of §, with ( ) here denoting an ensemble
average.
Now, the aperture illumination, taking into account the phase error, is
expressed as

o(r') = 2ke = (192)

g(r') = go(r")e ™), (194)

where go(r') is an ideal aperture illumination, which would be realized with
the perfectly smooth main reflector surface. go(7’) is a real quantity, since
we assume the oscillating electric field with the equal phase throughout the
aperture plane, in the idealized case.

Then, the field pattern f(n) around the beam center direction in the
far—field region is expressed according to equation (150) as

no—if2en- L _sr ds'
- ot

A

Now, we approximately replace the overall contribution of the phase error §
from the whole aperture plane, by an ensemble average (€?). Then, we have

(f(n)) = / go(r')e= <e“3>dA—‘§,, (196)

A
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where (e) can be described, by using the Gaussian probability density in
equation (193),

(e®) = /f(5)ei5d5: L /eié_%fd(S:e_%

— e 2 = 67%(4”—*(620 (197)

where we used a well known integration formula:

o0

/ G4 gy — fre (198)
and equation (192). Thus, we obtain
(o = e ()
= fo(n)e , (199)
where
fo(n) = / go(r)e 2 dA_"’;, (200)

A
is the ideal field pattern with the perfectly smoooth main reflector in the far
field region.
Since the power pattern P(6,¢) in the far field region is proportional to
| f(n) |2, we have

P0,6) - P,y U5 (201)

around the beam center direction, where Py(f, ¢) is the ideal power pattern
with the perfectly smooth main refletor. Hence, we have

Prae = POmaxe(@)Q. (202)

Therefore, using equations (179), (189), and (182), we obtain following ex-

pressions of the directivity, the effective aperture and the aperture efficiency

as functions of the root mean square surface roughness /(€?):

D = Doe_<L;2>), (203)
b= aa ()

e — 606_<4ﬁ\/@)2’ (204)
A = TAo€ * ) (205)



where the symbols with suffix 0, Dy = Pynee/P, Ay = DoA?/(47), and
nao = Aeo/A,, represent the values for the idealized case when the main
reflector surface is perfectly smooth. For a particular case of the circular
aperture, the directivity or the gain is expressed in a form:

D\2 _(4V@\?
D = 140 <%> e< 5 ) (206)

We derived the above relations for the transmission case. But the results
are readily applicable to the reception case as well, in view of the equivalence
of the antenna beam patterns in transmission and reception.

The gain curves as functions of wavelength are shown for some existing
radio telescopes in Figure 68.

100 —— vy “O— T — — 0

0 2mm

WAVELENGTH, A

Figure 68: Gain in dB and HPBW of some existing radio telescope antennas
as functions of wavelength (from Rohlfs and Wilson, 2000, Tools of Radio
Astronomy, 3rd edition, Springer).

3.13 Surface Accuracy and Lower Limit of the Observ-
ing Wavelength

A normalized gain curve as a function of & = /(€?)/X :

67(47“1:)2

xr2
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is shown in Figure 69 in the linear scale (in this figure, the rms surface
roughness 4/ (€?) is denoted as € for simplicity). It is evident from the figure

Peak of the Gain Curve
0.0025 T T

xeep(-(4m07) ——

0.002

0.0015

T
|

0.001

Normalized gain

0.0005

O 1 1 1 1 — 1
0 0.05 0.1 0.15 0.2 0.25 0.3
€ x=¢€/A

Figure 69: Normalized gain curve and its peak position.

that the maximum gain is obtained at the wavelength :

Apear, = 4T/ (€2)

or at the frequency :
c

Vpeak = —F7—>
)

depending on the rms surface roughness, or otherwise called “surface accu-
racy”, v/ (€?).

It may appear from the above discussion that we can use an antenna with
the surface accuracy 4/(€?) at short wavelength down to around 474/ (€?) ~
12.64/(€?) . But here we must be a little cautious.

What we actually receive from a radio source is the power :

1

1
‘/ l/ = — A —=
v 2 GSV 2

7714"49811

(see equation (181)), and equation (189) shows that

DA?

A7

A
D =4r—, and hence, A, =

= (207)
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Therefore, the received power is

1
W, = —DN3S,. 208
o (208)

Consequently, the wavelength dependence of the power is uniquely deter-
mined, i.e. without further dependence on the wavelength, by the wavelength
dependence of the gain:
Ag
\2
(see equation (189)), only when the flux density S, is proportional to A~
just like in the case of a thermal blackbody radiation source with temperature
T and solid angle €2, in the Rayleigh—Jeans region :
202 2kT

S, = C—2kTQ5 = VQS'
Therefore, the wavelength dependence of the gain, as shown in Figure 68, is
really a good measure of the antenna sensitivity, when we observe thermal
radio sources with the spectral index, which we defined as S, o v~ ® o A%,
being —2.

For non—thermal radio sources, such as Synchrotron radiation sources,
however, the spectral index a is not equal to —2, but usually positive.
Therefore, the wavelength dependence of the received power W, is no longer
uniquely determined by the gain D only.

D = 47”7A

Effect of the Surface Roughness on the Aperture Efficiency
1 —= T T T

exp(-(4r)Y) ——

x=1(4m) ---—----
08

0.6 [
04

0.2

Factor due to the surface roughness

Figure 70: Dependence of the aperture efficiency on the ratio of the surface
accuracy € to the wavelength .

Consequently, it is more appropriate to use the wavelength dependence
of the aperture efficiency 14 shown in equation (205) as a measure of the
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sensitivity of an antenna with a given diameter and a given surface accuracy
as illustrated in Figure 70 (here again the surface accuracy /(€?) is simply
denoted as €). As we see from the figure, the aperture efficiency is reduced
by a factor of around 0.37 when the wavelength A ~ 474/(€?). Although we
could still use an antenna with aperture efficiency < 37%, and we actually
do in some cases, it is usually accepted as a reasonable lower limit of the

observing wavelength
>\min ~ 20 \% <62>7 (209)

where the reduction factor is around 70 %. This means that the surface
accuracy specificatin of 150 pm rms, shown in table 3, is good enough for an
observing wavelength as short as 3 mm (or, as high as 100 GHz in frequency).

The surface accuracy specification is often the most decisive factor in the
cost estimation of an antenna, since tolerances in manifacturing of various
parts of the antenna, including supporting structures and materials for main
reflector panels, are largely determined by the required surface accuracy.
Therefore, the surface accuracy is carefully specified under certain environ-
mental conditions, such as, ‘at night time, under wind speed less than 10
m/s, and at elevation 45 degrees’. For high frequency radio telescopes, as-
tronomers make regular efforts to improve the surface accuracy by precisely
adjusting surface panels.

An example of the gain calculation, taking into account the surface ac-
curacy, as well as illumination taper, blocking, and spill over effects, is given
in table 4. One can easily confirm values of 100 % gain by equation (191),
and values of surface accuracy effects for main reflector and subreflector by
equation (205) (though we derived equation (205) for a main reflector, the
same discussion is applicable for a subreflector as well).

3.14 Pointing Accuracy

The main lobe axis of a radio telescope antenna may not be exactly oriented
towards a required direction due to the mechanical inaccuracy and the de-
formations due to the gravity and the wind pressure. The angular offset
€gp between the actual and required directions is called “pointing error” or
“tracking error” (Figure 71). The rms value of the pointing error is often
called as “pointing accuracy” which we denote here as oy

o9 =1/ < €5 >. (210)

Let us consider the loss of the received power from a radio source due to
the pointing error. For simplicity, we assume a Gaussian power pattern P(0)
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Frequency in GHz

[tems Remarks
2.2 8.2 22.2 43.1
[llumination taper -2.39 -0.92 -1.30 -1.46
Blocking Subref. -0.16 -0.16 -0.16 -0.16
Stay -0.35 -0.35 -0.35 -0.35
Spill Main ref. -0.27 -0.07 -0.01 -0.01
over Subref. -0.97 | -0.51 -0.18 -0.09
Main ref. -0.01 -0.13 -0.94 -3.54 0.5mm rms
i(lzl(i?(;iy Subref. neg. -0.02 -0.15 -0.57 0.2mm rms
Setting neg. -0.04 -0.18 -0.66 Subref-feed
Horn cover loss -0.07 -0.06 -0.11 -0.24
Aperture in dB -4.24 -2.26 -3.38 -7.08
efficiency| iy 9 | 37.6% | 59.4% | 45.9% | 19.6%
100 % gain in dB 47.2 58.6 67.3 73.1
Gain in dB 43.0 56.4 63.9 66.0
Feed & VSWR loss -2.0 | (NAO) | (NAO) | (NAO)
Total gain in dB 41.0 | (56.4) | (63.9) | (66.0)
Total efficiency in % | 23.8% | (59.4%) | (45.9%) | (19.6%)
Nominal gain in dB 40.7 56.1 63.6 65.7 at horn neck

Table 4: An example of the gain calculation for a 10 m diameter antenna.
Numerical values are given in dB, unless otherwise stated.

107




Required direction

Main lobe axis

_t

Eo;

Wind
IlIIIIIIIIIllIII’

IlIIIIIIIIIllIIII>

i Mechanical imaccuracy
H

l Gravity

Figure 71: Pointing error.

with the peak power Py and the HPBW O :

P(0) = Pye 2(%) (211)

If we assume that the main lobe axis is offset from the required direction
in average by oy, the received power from the radio source at the required
direction is reduced in average by a factor of

(212)

Figure 73 shows the power loss calculated by equation (212) as a function of
the pointing accuracy oy (which is denoted as o in Figure 73 for simplicity).
It is evident from the figure that the pointing accuracy must be

1
< — 21
09 > 10@ ( 3)

to keep the power loss smaller than several %. Table 5 shows the pointing ac-
curacy requirement given in equation (213) for some typical cases of antenna

diameter D and observing wavelength A on the basis of the approximate
formula © ~ \/D.
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Figure 73: Power loss due to the pointing error.
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10 m 20 m 45 m

A 7 mm 2 mm 1.5 mm

09 maz | 0.°004 | 0.°00057 | 0.°00019

Table 5: Requirements to the pointing accuracy.

Needless to say, a state—of—the—art technology of mechanical construction
and good enough materials are required to precisely keep the orientaion of
a huge radio telescope antenna, with the accuracy of 0.001 degree or higher,
under variable wind and heat conditions. The pointing accuracy is another
cost—impacting factor, along with the surface accuracy.

3.15 Design of the Feed System

In order to efficiently receive or transmit the radio signal of wave length A
with a paraboloidal antenna of Cassegrain design, the diameter Dg of the
subreflector, the diameter of the feed horn Dr and the distance L between
the feed horn and the subreflector must satisfy a relation for avoiding a
significant spill over from the edge of the subreflector :
A Dg

Dr < A (214)
as illustrated in Figure 74 (note that the subreflector is located in the near
field, or in the Fresnel region, of the feed horn, and therefore the beam
pattern of the feed horn is more complicated than the one in the far field,
i.e. in the Fraunhofer region, where a sharp main lobe with HPBW ~ \/Dp
is dominating).

Suppose that we use a paraboloidal antenna at several observing wave
lengths. If we denote the longest observing wavelength as \,.. and the
diameter of the feed horn for the longest wave length as Dg 42, the product
DgsDpg ypar must be well larger than A, L according to equation (214). In
order not to make either of Dr and Dg too large, it is natural to select that
Ds >~ Dp pmaz- Thus the equation (214) is reduced to Aper L < D%, ... In
actuality, a more stringent condition:

D%
mar - () 215
)\mamL B ( )
is usually considered as an optimal condition for the size Dp ., of the feed
horn and the subreflector for the longest wavelength. For example, if we
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Figure 74: Diameters of the feed horn Dy and the subreflector Dg and their
mutual distance L.

adopt this condition, and assume L = 10 m for definiteness, we have a
following table of feed horn sizes for several cases of the longest wavelength.

)\ma:r DF mazx
3 mm (100 GHz) | 0.55 m
7mm (43 GHz) | 0.84 m

)
1.4cm (22 GHz) | 1.2m
3.8 cm (8 GHz) | 2.0 m
15cm (2GHz) | 39m
21 em (1.4 GHz) | 4.6 m

Table 6: Maximum observing wavelengths vs. diameters of the feed horns.

It is evident from the table 6 that at an observing frequency as low as 1.4
GHz or 2 GHz the sizes of the feed horns and sureflectors must be fairly large.
In practice, feed horn sizes are often designed to be smaller than subreflector
sizes, and the optimal condition in equation (215) is significantly released, in
order to place feed horns in a finite volume of the receiver cabin, by sacrificing
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a part of the aperture efficiency. Even though, it is difficult to cover too wide
frequency range within a simple Cassegrain design only.

An alternative way to receive the low frequency radio waves without too
much increasing the feed—horn and subreflector sizes is to use the primary
focus (Figure 75). In the primary focus case, a feed horn must ‘illuminate’ the
whole area of a large main reflector. Therefore, a wide beam, and therefore
a small diameter of the feed horn, is rather preferable.

Figure 75: A large feed horn and subreflector system (left) or a primary feed
system (right) is needed for the low frequency observations.

The large feed horns and subreflectors, or the feed and receiver blocks on
the primary focus, required for the low frequency observations, might cause
serious difficulties for achieving the high aperture efficiency and the high
pointing accuracy in the high frequency observations. Nevertheless, it is a
natural desire of radio astronomers to observe at as many frequency bands as
possible, for example, from the 1.4 GHz line of the neutral hydrogen to the
115 GHz CO line, say, with a single radio telescope. Hence some sophisticated
solutions are required (see examples in Figures 76 and 77).

3.16 Other Characteristics
3.16.1 Range of Motion

For an Alt—Azimuth mount antenna, the range of azimuth and elevation an-
gles must cover at least from —180° to +180° and from 0° to 90°, respectively,
in order to be able to point toward any direction in the sky. However, we
have to also take into account that a radio source may cross the meridian
line during an observation, from east to west, or west to east, in case of cir-
cumpolar sources, depending on their locations with respect to the celestial
pole. In order to smoothly track such diurnal motions of radio sources, the
azimuth motion range is usually chosen from —270° to +270° with 0° selected
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Fig. IV-2a. Proposed Cassegrain geometry, the length, L, and open-
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Figure 77: The tilted subreflector and feed horns arranged on a circle in 25
m radio telescopes of VLBA (Very Large Baseline Array).
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at South (in the conventional azimuth angle, measured eastward from North,
the same range corresponds to —90° — +450°).

3.16.2 Slewing Speed

For VLBI antennas, especially for geodetic VLBI antennas, high slewing
speeds both in azimuth and elevation are preferable, since the high slewing
speeds allow us to effectively observe many sources on different points of
sky within a limited telescope time, without losing much time for antenna
repointing from one source to another. Generally, slew speeds larger than
2°/sec in both axes are desirable.

In recent VLBI observations, a technique called ‘fast switching’ is often
used. In this technique, orientation of a telescope is switched between two
closely spaced radio sources (typically, separated by less than a few degrees)
within a period of time as short as 30 to 40 seconds, for compensating ir-
regular atmospheric refraction effects. For the fast switching, not only the
slewing speeds, but also their accelerations must be sufficiently high, to real-
ize the short switching cycle. For example, 3°/sec slewing speeds and 3°/sec?
accelerations in both axes are desirable to achieve 20 second switching cycle
for sources separated by 2 to 3 degrees.

3.16.3 Operational and Survival Loads

Operational and survival loads characterize environmental conditions (tem-
perature, wind speed, etc.) under which antennas can be normally used for
observations, and can survive in a stable stow position at rest, respectively.
Operational loads must be determined depending on the actual conditions of
the observing sites. For mid-latitude stations with moderate wind, usually
operational temperature condition of around —20 — 40 °C and operational
maximum wind speed condition of 7 ~ 10 m/sec are appropriate. Sur-
vival wind load condition could be around 90 m/sec or 60 m/sec, depending
whether there are strong typhoons (cyclons, or hurricanes) or not, in the
station area.

3.16.4 Axes Offset and Axes Orthogonality

For both Alt—Azimuthal and Equatorial mount antennas, it is desirable that
two axes (Az— and El-axes, or Right Ascension— and Declination—axes) ex-
actly intersect at a point, and are mutually orthogonal. After actual mecah-
nical construction of antennas, the two axes usually show some finite offsets
and non orthogonalities. Tolerances to these quantities are often required to
be less than a few mm and 0.01°, respectively.
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Even though such requirements are satisfied, they may be still large
enough to affect observational performances. The axes offsets may affect
high—precision geodetic VLBI measurements of antenna positions, and the
axes non—orthogonalities may affect antenna pointings. Therefore, we must
estimate and calibrate the offsets and non-orthogonalities, based on the
geodetic VLBI measurements and antenna pointing measurements.

4 Antenna Temperature and Single Dish Imag-
ing
4.1 What Is the Antenna Temperature 747

“Antenna temperature” is an important but again a little confusing quantity
often used in radio astronomy, as well as in VLBI geodesy, to describe the
power received by an antenna from a radio source. Actually, the antenna
temperature is nothing but the power W, per unit frequency bandwidth,
centered at v, received by an antenna, which is regarded as a noise power
added to a detector, and converted to the “temperature of the noise” T4
according to the Nyquist theorem :

W, = kT (216)

Therefore, the amtenna temperature is the “temperature sensed by an an-
tenna” and has nothing common with the temperature of the antenna body
which could be measured by a thermometer.

If we denote the effective aperture of the antenna as A, and the effective
flux density of the source as S, then W, is expressed by equation (181) :

1
Wu - _Ae v-
5 S

If the normalized power pattern of the antenna is P, (6, ¢) and the source
intensity distribution is 1,(6, ¢) in the antenna—fixed coordinate system, the
above equation is transformed to

W, = 548, = 5A. [ [ P.6.0)1,66.0) im0 d0 do.
Q

in view of the equation (174). We can formally extend the above range of
the integration to the whole sky, since P, (0, ¢) ~ 0 outside the narrow beam
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anyway. Thus, using the solid angle element df) = sin 0dfd¢, we express the
antenna temperature in equation (216) as

T, = o A, 74 Po(0,) 1,(0. 6) dC2. (217)

(see Figure 78).

Figure 78: Antenna temperature.

Taking into account the equation (183) which relates the effective aperture
A., the beam solid angle 24 and the wavelength A

A = N2,

and the relation

0 — 74 P, (0, 6)dC2.
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we can transform the equation (217) into

AN $P0,9) 1,(0.¢)d0
T2k §P.(0.0)d0

Ta (218)
Furthermore, if we express the intensity I, through the brightness tempera-

ture Ty :
2k

Iy = ETB,
$Pa(0,9)d2r
Therefore, the antenna temperature is the brightness temperature averaged
over the antenna beam with the weighting function P, (6, ¢), which is the
normalized power pattern.

we obtain

Ty (219)

4.2 Imaging with the Single Dish Radio Telescope

Based on the above discussions, we can interpret that the single dish radio
telescope is a huge power meter measuring the weighted mean brightness
temperature at a certain direction of the sky with the antenna power pattern
as the weight. The single dish radio telescope can draw the image of the
radio source by scanning from point to point meshed on the sky measuring
the distribution of the brightness (intensity) averaged over the beam. It is
thus naturally understood that the angular resolution of the image obtained
by the single dish radio telescope is determined by the beam size (Figure 79).

Let us examine three simplest cases of the source brightness distribution.

1. Point source [,(s) = S,6(s — sg), where S, is the source flux density,
while s and s are unit vectors, and s is parallel to the beam axis. In
this case we have

1 1
Ty = %Ae % Pn(s) S, 5(8 - 30) s = %Ae Sy (220)

We can measure the effective aperture A, or the aperture efficiency 74
by observing a point source of known flux density on the basis of this
equation.

2. Source of finite extent which slightly exceeds the main lobe :

[ Pu(0,¢)dQ
T.=T main lobe _ JWT _ Th. 291
A B an(H,gb)dQ 0 B~ MNumiB (221)
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Figure 79: Scanning observation for radio source imaging with a single dish
radio telescope.
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We can measure the main beam efficiency 7,, by observing this kind of
source with known brightness temperature (for example, a planet) on
the basis of the above equation.

3. Widely extended homogeneous source :

Ty = Tj. (222)

For example, we always receive the antenna temperature of 2.7 K from
the cosmic backgroud radiation.

Usually, the antenna temperature added by an astronomical radio source
is very low, typically ranging from milli-Kelvins to Kelvins depending on the
source and the telescope. For example, if we receive a relatively strong radio
source with the effective flux density of 1 Jy (= 1072 W m~2 Hz™!) using
an 20 m diameter antenna with the aperture efficiency of 60 %, the antenna
temperature is only about

1 1
Ty = —A.S, = —nanD?*S, ~ 0. K.
4= 5 S AT S, >~ 0.068
This is of course much lower than the physical temperature of an antenna

which is always ~ 300 K.

Q : Why can’t a radio telescope give us an image of the radio source just by
a single observation like any optical telescope does?

A : Unlike the photo plate or CCD plate, a radio telescope is usually equipped
with only one detecting element, the receiver. So what you can sense is
whether the received power is strong or weak in the beam direction. If you
have many receivers on the focal plane, then you will get the two—dimensional
image at once. Now so—called multi-beam receiving systems are intensively
developed at many radio telescope observatories of the world for that purpose.

5 Receiving Systems

The very weak high frequency radio signal from an astronomical radio source
collected by the main reflector is amplified and frequency converted by the
receiving system and sent to the signal processing unit as the tractable signal
of low frequency and with enough strength.

At the same time, the receiving system inevitably adds some noise to the
received signal, which may make it difficult to extract scientifically useful
information with sufficiently high signal-to-—noise ratio. Also, it is difficult
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to keep the ultra—high amplification ratio of the receiving system very stable
in time. The gain variation effect must be well removed from the observed
data for any measurement of the received power from a radio source.

So, the topics here will cover the system noise temperature, signal-to—
noise ratio, frequency conversion and removal of the gain—variation effect.

Receiving system

Low Noise
Mixer Amplifier Mixer Amplifier

P .

tractable
signal
strong enough Very weak
and high-frequency
low-frequency Local Local signal
Oscillator Oscillator
A
Signal
Processing
Unit

Figure 80: A schematic view of a radio telescope receiving system.

5.1 System Noise Temperature

The “input equivalent noise”

The word “system noise” means the “input—equivalent” of the sum of
all noises generated in the receiving system (in the amplifiers, attenuators,
connectors, ...) as well as in the ground pickups due to the sidelobes and the
spill overs and also in the thermal radiation of the atmosphere. The “input
equivalent” implies here to treat something occuring within and/or outside
the system as all coming from the outside of the system as schematically
illustrated in Figure 81. If our system has a total gain G and if the noise
power per unit frequency bandwidth at the output of our system is Wy,
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Figure 81: What is the “input equivalent noise”?

then the power Wg, of the input—equivalent system noise is

WNI/

W, —
o G

The “system noise temperature” Ty is a temperature representing the power
Wy, of the system noise in terms of the Nyquist theorem Wy, = kTj.

Signal attenuation and thermal noise
Let us consider how the thermal noise emerges within the receiving system
using a model based on the radiative transfer equation, since it is most likely
that the absorption and emission of the radio wave occur in a similar way
both in the wave guide systems of the receivers and in the interstellar clouds.
Let us apply the radiative transfer equation :

dr,
dl

= —r,1, + €, (223)

to some “lossy piece” of our receiving system with temperature 7' (Figure
82). For simplicity, we ignore the amplification for a while and consider the
effect of the attenuation only. In equation (223), I, again stands for the
intensity of the radio wave, [ is the length along the optical path, and x, and
€, are the opacity (or absorption coefficient) and the emissivity, respectively.
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A lossy piece in a receiving system
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Figure 82: Signal attenuation and thermal noise emission in a lossy piece of
the receiving system.

Since it is likely that every element of the lossy piece, for example attenu-
ator, wave guide tube, connector, etc., is in the thermodynamical eqilibrium
with each other, giving rise to the Boltzmann distribution among energy
levels, we assume the LTE(Local Thermodynamic Equilibrium) in the lossy
piece. This means that Kirchhoff’s law

holds as a good approximation, although the radiation is not in the thermo-
dynamic equilibrium with the elements of the lossy piece

I, # B,(T),
where s )
2hv 1 2v
B(T) = — ~ kT
(T) R T

is the Planck function for the intensity of the blackbody radiation in the
environmental temperature 7" of the lossy piece. Using the Kirchhoff’s law
and introducing the optical depth 7,

dr, = —k,dl,
we can reduce equation (223) into

dl,
dr,

I, — B,(T).



If we express the intensity I, through some “temperature” T as

2 2
e
C

which is an equivalent of the brightness temperature in the interstellar—
medium case, the equation (223) is further reduced to

=T —1T. 224

dr, B (224)

In the isothermal environment (7' = const), a solution of equation (224)

within the lossy piece, where 0 < [ < [y and 7,(0) > 7, > 0 as shown in
Figure 82, is

Tp(l) = T(0)e™ ™ £ T(1 — =™, (225)

where T5(0) now can be interpreted as representing the power of the incom-
ing signal at the input (left-most edge in Figure 82) of the lossy piece. In
particular, a solution at the output (right-most edge in Figure 82) is

Tp(l) = T(0)e ™ @ + T(1 — e ™), (226)

The first term in the RHS of equation (226) corresponds to the power of the
input signal attenuated by a factor of e=™(© in the lossy piece, while the
second term shows the power of the newly added thermal noise.

Note that, if 7,,(0) = 0, the second term of the RHS of equation (226) is
also zero, so no thermal noise is added. Thus this general discussion leads
to an important conclusion that every receiver element adds thermal
noise as far as it attenuates the input signal.

Let us denote ¢ = e~ and call it “transmission efficiency”. ¢ = 1
means perfect lossless transmission and € = 0 means complete attenuation
or zero efficiency.

The thermal noise Ty added in the system in temperature 7" with a trans-
mission efficiency ¢ is Ty = T'(1 — ¢) according to equation (226). Therefore,
the input—equivalent system noise temperature Ts of such a system is by
definition
- TN T(l — 5)

= (227)

Ts

In order to get a low—noise device, one must achieve a high transmission
efficiency e and/or cool the whole system in order to lower the environmental
temperature T'. This is the reason why modern highly sensitive radio tele-
scope receivers are usually cooled to a very low temperature close to 10 K
using cryogenic systems.
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Q : Sometimes we see in the advertisements of the satellite broadcasting re-
ceivers phrases like “65 K low noise amplifier in the room temperature”. Isn’t
such a statement against the principles of the thermodynamics?

A : “65 K” here implies the system noise temperature which is the input—
equivalent temperature of the noise added in the system. Since well made
systems could transmit signals with high efficiency (¢ ~ 1) even in the room
temperature 1" ~ 290K, there is no violation of the thermodynamics.

Q : If we slightly misalign a wave guide tube, the system noise temperature
of our receiving system could be as high as several thousand Kelvin. But why
the purely passive element like wave guide tube can increase the temperature
to such a high value?

A : You could increase the input—equivalent noise temperature to an arbi-
trarily high value if you only degrade the transmission efficiency. In fact, if
=0, then Ty =T but Ts = 0o !

System noise temperature of the multistage receiving system

Receiving systems of the radio telescopes are usually composed of serially
connected several amplifiers, frequency converters, and other related devices.
Such a multistage design is required because it is extremely difficult to realize
by a single amplifier the ultra—high amplification of the very weak signal of
an astronomical radio source to the level of the tractable signal. In addition,
it is also difficult to convert the high frequency signal to the low frequency
signal by just one frequency converter.

For example, the power received from a source of the effective flux density
S, = 1 Jy by an antenna with the diameter D =30 m, the aperture efficiency
na =0.6 and the frequency bandwidth B = 200 MHz is

1 1
W = 5AesyB: gnAWDQS,,B

1
= 3X 0.6 X 3.145 x 302 x 1 x 10726 x 200 x 10° = 4.2 x 10710 W.

Even if we apply 100 dB (i.e., 10 times) amplification to this signal, we
obtain 4.2 W only!

Therefore, a receiving system can be usually represented as a series of
linear devices each having a gain G; and a system noise temperature Ts;. A
passive device like a transmission cable can be regarded as having a gain (=
transmission efficiency ¢) smaller than 1. For a device which both amplifies
the signal and generates the noise, we can conceptually regard that a passive
attenuator first reduces the signal power by a factor of ¢; and adds the thermal
noise 7'(1 — ¢;), and then a lossless amplifier increases both the signal and
the noise by a factor of G;/e;, so that the total gain and the system noise
temperature are described as G; and Ts; = T'(1 — ¢;) /e, respectively.
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We do not include to this linear multistage receiving system the square
law detectors or correlators because they are essentially non—linear devices.

Because of the linearity, the total gain GG of an n-element multistage
receiving system is expressed as

i=1

If we describe the gain in dB, then we have

i=1

Input power Output power

Pi1 Gi Pi= (Pi-1 + kTsi) Gi

—

kTsi

Figure 83: Input and output of a linear device with gain G; and system noise
temperature T;.

Now let us describe the output power P; of i-th device in the n—element
multistage receiving system through its gain G, its system noise power kT;
and the output power of (i-1)-th device P,_; as

P; = (Pio1 + kTs:) G, (228)

(see Figure 83). Then if we denote the input power to the first device as
Py = kTy, where Ty is the antenna temperature due to an astronomical
source, the output power of n—th device is expressed as

P, = { . {[(Po + kT51)G1 + kng]Gg + kng}Gg + -+ kTsn}Gn
= KTy H Gi + kTsy H Gi + kTso H Gi + kTs3 H Gi
i=1 i=1 i=2 i=3

+ o +kTs, G, (229)

(Figure 84).
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Figure 84: Multistage receiving system.

n
Denoting the total gain of the system as G = [] G; and equating P, in
i=1
equation (229) to the sum of the input power and the sytem noise power
multiplied by the total gain

P,=k(Ty+Ts)G, (230)
we obtain an expression for the total system noise temperature :
Ts2  Ts3 Tsn,
Ts =T, —= e . 231
e A N N (231)

Since usually GG; > 1, the system noise temperature of a device in a later
stage does not contribute much to the total system noise temperature Ts. On
the other hand, the system noise temperature of the first stage device directly
contributes to Ts and practically determines the system noise performance
of the whole system. Therefore, it is important to make the first stage
device (mostly amplifiers) as lownoise as possible. For this purpose,
the first stage device is often cooled down to ~ 15 K or lower. First stage
amplifiers are frequently called “low noise amplifiers (LNA)”.

What we showed above can be summarized as replacing the actual mul-
tistage receiving system shown in the upper panel of Figure 85 by a simple
total system shown in the lower panel.

The total system noise temperature Ty figuring in the output of the whole
system as shown in equation (230) or in the lower panel of Figure 85 is
relatively easily measured and provides the ratio T4 /Ts which is important
in the signal-to—noise ratio considerations.

Receiver noise temperature 1Txx

The system noise temperature of the receiving system only (i.e., not in-
cluding other effects like atmospheric or ground pickup) is often called as
“receiver noise temperature” and is denoted by Tgrx.

Historically, a variety of low noise devices were used for the first stage
which practically determines Trx. Some examples of receiver noise temper-
atures of various devices are shown in Figure 86 as functions of observing
frequency.
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Figure 85: Total gain and total system temperature of the multistage receiv-
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Figure 86: Receiver noise temperatures Trx presented in the 1st edition of
‘Tools of Radio Astronomy’ by K. Rohlfs (1986).
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Nowadays, low noise amplifiers (LNA’s) made of HEMT (High Electron
Mobility Transistor) are mostly used in a wide frequency range lower than
100 GHz, because HEMT amplifiers are stable, easy to handle and capable
of receiving sufficiently wide bandwidth. HEMT amplifiers for 22 GHz or
higher frequency are usually cooled by He-gas cryogenic system (Figure 88).
At 8 and 2 GHz which are used in the current geodetic VLBI observations,
He—cooling is rarely applied since the HEMT amplifiers are good enough at
these frequency ranges even in the room temperature or in the electronically
cooled system to provide Try as low as several tens of Kelvins.

At frequency higher than 100 GHz, He-cooled SIS (superconductor—insulator—
superconductor) mixers instead of the amplifiers are usually used as the first
stage device, since it is still difficult to make reliable low noise amplifiers for
the high frequency range (Figure 89).

Figure 87 shows present day performance of the HEMT amplifiers and
SIS mixers.

Antenna noise temperature 7,,; and atmospheric contribution to
the system noise temperature

Besides the thermal noise generated within the receiving system, we have
other contributions to the system noise.

The thermal radiation from the ground, which is picked up by sidelobes
or spill overs from the main reflector edge, and all other noises which could be
picked up or generated by the antenna structure, can be regarded as form-
ing some “antenna related” noise power. We call a temperature which is
calculated from the power using the Nyquist theorem “antenna noise tem-
perature” and denote as T,,;. Since the antenna noise temperature 7,
comes from outside of the antenna receiving system, it can be treated just
as an input noise to the first stage of the receiving system. This means that
Tunt can be simply added to Ts; in the RHS of equation (231). Of course,
the antenna noise temperature must strongly depend on the elevation of the
antenna beam since the ground pickup must be stronger at lower elevation.

The noise temperature Ty, due to the thermal radiation of the atmo-
sphere of temperature T, is simply expressed by the radiative transfer
theory as

TNair = Tatm (1 — €77, (232)

where 7., is the optical depth of the atmosphere at the observing frequency
and at the direction of the antenna beam. Note that 7., and therefore Ty,
must vary significantly with the elevation of the antenna beam. The antenna
noise temperature T4, can be also just added to Ts; in the RHS of equation
(231).
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Figure 87: Receiver noise temperatures Trx v.s. frequency diagram brought
from 3rd edition of ‘Tools of Radio Astronomy’ by K. Rohlfs and T.L. Wilson
(2000). Note that many devices shown in Figure 86, including FET and
Parametric amplifiers, are no longer shown in this Figure, because they are
largely replaced by HEMT amplifiers.

Figure 88: He—cooled 22 GHz and 43 GHz HEMT amplifiers placed in com-
mon cryogenic dewers and mounted on VERA dual-beam receiving system.
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Figure 89: He—cooled SIS—mixer in the 100 GHz and 150 GHz dual channel

receiver system of Taedok Radio Astronomy Observatory, Korea.
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Therefore, the total system noise temperature Ts now including the at-
mospheric and the ground pickup effects can be expressed as

TS = TRX —+ Tant + Tatm(]- — €_Tatm). (233)

5.2 Frequency Conversion

If a radio signal is band limited, that means it has non—zero spectral power
within a certain frequency range with a finite bandwidth only, we can shift the
central frequency of such a signal (usually to the lower side) without losing
any spectral information (Figure 91). This is the principle of the frequency
conversion.

spectrum

!)/?\ 7\

Figure 91: Frequency shift of the band limited signal.

Frequency conversion is needed in the radio telescope receiving system
because

1. the received signal is much less attenuated in transmission cabeles and
is much easily filtered, detected by a square-law detector, digitized,
and so on, in the low frequency (lower than 1 GHz, say) than in the
high frequency, and

2. it is necessary that the input and output signals are in different fre-
quency bands before and after the enormous amplification of several
tens to hundreds dB for avoiding possible leakage of a small amount
of output power back to the input which could terribly oscillate the
system.

Technical terms in the frequency conversion
A little peculiar technical terms are used in descriptions of the frequency
conversion. They are

e radio frequency (RF) : the high frequency involved in the band
which is directly received by an antenna, sometimes called also as “sky
frequency”,
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e intermediate frequency (IF) : the low frequency obtained by the
frequency conversion,

e local oscillator (LO) : an oscillator which provides a sinusoidal ref-
erence signal with a specified frequency,

e mixer : a nonlinear device which multiplies the reference signal to the
received signal,

e bandpass filter (BPF) : a filter which passes only necessary band of
the intermediate frequency and cuts off all other frequency components
in the output from the mixer,

e down converter : a unit composed of the LLO, mixer and BPF which
converts RF v to IF v—v o, where vy is the frequency of the reference
signal provided by LO which is often called “LO frequency”,

e superheterodyne receiver : a receiver based on the frequency con-
version technique.

Figure 92 shows elements of the frequency conversion. For example, in a
typical Mark ITT-type geodetic VLBI observation at 8 GHz, we can choose
8180 MHz ~ 8600 MHz as the RF band and 8080 MHz as the L.O frequency
vro to get 100 MHz ~ 520 MHz as the IF band.

What is the mixer?
The main part of the mixer is a device (for example, a mixer diode) which
has a nonlinear current (I)-voltage (V') relation :

I=ag+ a1V +a,VZ+a3V?+ -, (234)

where a;’s are constant coefficients. The received signal and the reference
signal from LO are first summed up before entering to the nonlinear device.
So, denoting the voltage of a frequency component with the angular frequency
w = 27v in the RF band as V; cos(wt + ¢) and the voltage of the reference
signal with LO angular frequency wro as Vo cos(wrot + ¢ro), where ¢ and
¢ro are initial phases, we have the summed input voltage V to the nonlinear
device :

V = Vjcos(wt + ¢) + Vio cos(wrot + ¢ro)- (235)

Therefore, we obtain a term proportional to V, V7 in the output current from
the nonlinear device due to the second order term asV? of the I-V relation
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in equation (234), which is

asVsVio cos(wt + ¢) cos(wrot + ¢r.0)

1
= §a2VSVLO cos|(w + wro)t + ¢ + dro|
1
+ 50’2‘/5‘/[/0 COS[(u} — wLo)t + gb — QbLO]- (236)

The first and second terms in the RHS of equation (236) correspond to up
converted and down—converted frequencies, respectively. So, we can realize
the desired frequency conversion by picking up only the down—converted
frequency with a suitably designed BPF which passes the down converted
frequency and cuts off the up converted as well as all other frequencies pro-
duced by the [V relation in equation (234). Note that the linearity of the
received signal is preserved in this procedure though we used the nonlinear
device.

| | | mixer
; . non.lmear ; J BPF L
k device
1
e
LO

Figure 93: General concept of the mixer.

Upper sideband and lower sideband
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If the LO frequency is chosen within the received RF band, two frequen-
cies wy and wy, satisfying relations

Wy —Wro = Wrr (237)

and
Wro — WL = Wwrr, (238)

both pass through the BPF and have the same IF w;p. In fact, they both
have the same cos(wypt+---) form in the mixer output as the above discusion
on the mixer principle shows. The frequency higher than the LO frequency
forms “upper sideband (USB)” and the lower one forms “lower sideband
(LSB)”. When the both sidebands contribute to the IF band, the IF spectrum
turns out to be a superposition of the down-converted spectra of the USB
and the frequency inverted LSB as illustrated in Figure 94. Frequencies in

LSB: USB
< // \
1 \. / 1 1 1 \ >
0 w, wLO- (‘00 Wo Wot Gy
IF RF

Figure 94: Upper and lower sidebands are converted to the same IF band.

different sidebands corresponding to the same IF frequency are called “mirror
frequencies” or “image frequencies”.

Sideband rejection

A superheterodyne receiving system which accepts both USB and LSB
contributions to the IF band is called “double sideband (DSB)” receiver,
while a system which receives only one of the two sidebands is called “single
sideband (SSB)” receiver.

For observations of continuum sources, the DSB receivers offer better
sensitivity, while for observations of spectral line sources, SSB receivers are
preferred. In VLBI observations, SSB receivers are mostly used even for
continuum sources for avoiding complication of the data processing.

The process to remove unnecessary sideband for a SSB observation is
called “sideband rejection” or “image rejection”. The rejection is most simply
realized by a suitable BPF in the RF range which limits the RF band of the
mixer input in such a way that the LO frequency falls outside of the input
band (Figure 95).
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Figure 95: Sideband rejection in terms of the BPF in the RF band.

5.3 Signal-to—Noise Ratio of the Single-Dish Radio
Telescope

The radio signal from an astronomical source received by a radio telescope
antenna is transmitted through the receiving system as a voltage or current
signal as shown in Figure 96. After several steps of amplification and down—
conversion a unit like a square-law detector squares the voltage (or current)
signal to make a power signal which is eventually displayed to observers by
a powermetor or other devices.

The power signal is the squared voltage averaged for some “integration
time”. A statistical theory of the dispersion of the time—averaged squared
random variable shows that the signal-to-noise ratio S/N of the detected
power is expressed in terms of the antenna temperature T, system noise
temperature Ts, bandwidth B and integration (or averaging) time 7, by a

formula : T
S/N = T—A\/BTG. (239)
s

Or, if we introduce again the Boltzmann constant k, the effective aperture
A., the effective flux S,,, the aperture diameter D and the aperture efficiency
N4, We have

A.S, mnaD%S,
N = /B, = 12— "V /BTt . 24
SIN = S VI = 5T Ta (240)

As we mentioned earlier, even if we receive a relatively strong radio source
with the effective flux density of 1 Jy ( = 107 W m 2 Hz !) using an

137



radio

wave current or voltage power display
< > < > ‘4 > < >
'
'
'

RF IF
Y

V - Vo

|
|

Single dish telescope

pre-amp mixer JIF amp

+ SQ-Det,ectorH Integrator |—‘—

local oscillator

|
|

|
|
analog % digital ! ‘
{ » | Connected InFerferometer
‘ '

instrumental delay'

: |
i Multiplier |~ Integrator |—’—

correlator

Tape playback
unit (PBU)

|
|
|
|
|
|
|
|
|
|

Integrator

Figure 96: Superheterodyne receiving systems in single dish telescope, con-
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20 m diameter antenna with the aperture efficiency of 60 %, the antenna
temperature is only about

1

1
Ty= —AS, = —
4= gpAeSy = gpn

At D2S, ~ 0.068 K.
Therefore, if the system noise temperature is 100 K (which is not a bad figure,
by the way),
Ty
Ts
Nevertheless, if we observe the source with the receiving bandwidth B = 100
MHz and integrate for 1 second, then the signal to noise ratio is

6.8 x 1074 !

S/N = 6.8,

and therefore well detectable! This is the way how radio astronomers receive
the radio source signals.

5.4 Gain Variation of the Receivers and Switching Ob-
servations

The high signal-to—noise ratio does not necessarily guarantee the detection of
a radio source since there might be disturbing effects other than the thermal
noise. One of such effects is the gain variation of the receiving system. At
frequencies higher than ~ 15 GHz, the time variation of the atmospheric
thermal radiation is another serious problem.

In order to understand why the gain variation may prevent the detection
of the signal from the astronomical source, we consider again the output
power of the receiving system :

W = k(T4 + Ts)GB, (241)

where k is the Boltzmann constant, T4 is the antenna temperature due to the
astronomical source, Ty is the system noise temperature, (G is the total gain
and B is the receiving bandwidth. Suppose that GG shows some short—term
(a few minutes, say) time variation AG. Then received power would vary as
much as

AWg = k(T4 + Ts)AG B. (242)

Since the system temperature Ts is usually much larger than the antenna
temperature T}, the variation AWg ~ kTs AG B could easily exceed kT4GB
itself, making the detection of the source almost impossible (Figure 97).
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Figure 97: The gain variation prevents the detection of the astronomical
radio source even when the S/R is sufficiently high.

The simple observation measuring the received power as described so far
is called “total power mode observation” or “total power radiometry”.
The above discussion shows that a condition
Ty AG
— > — 243
7.~ G (243)
must hold, in order for a source to be detected against the gain variation
in the total power mode observation. For a source with 7y ~ 10=*T%, this
implies that we must suppress the gain variation of the receiving system
AG/G within a level as small as
AG
— <107 244
G (244)
which is practically quite difficult.
Therefore, radio astronomers apply switching techniques to the single dish
telescope observations in order to avoid the gain variation effect and firmly
detect the weak astronomical radio sources.

Dicke mode switching observation

A switching method was proposed by R.H. Dicke in 1946 and has been
widely used. In this method, two input signals (voltages), one from the
antenna feed horn and another from a noise source (ex., a cooled resistor) of a
constant temperature Tx are quickly switched in front of the receiving system
and, at the same time, the sign of the output power from the square law
detector is reversed with the same switching timing which are then summed
up (i.e., the powers from the two inputs are subtracted) and averaged as
shown in Figure 98.

The square-law detector yields a power

Wa=kTs+ Ts)GB, (245)
in the upper switch position in Figure 98, while in the lower switch position,

WR — ]{?(TR + TRx)GB, (246)
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noise source switch-timing control pulse

Figure 98: A general scheme of the Dicke mode receiver.

where Ty is the receiver noise temperature. At relatively low observing
frequency < 15 GHz, the atmospheric contribution to the system noise tem-
perature is much smaller than Trx and the ground pickup effects are also
small as far as the elevation is not very low. Consequently, Ts = Trx in
equation (233) for the low frequency observations. Therefore, the difference
output from the Dicke mode reciever gives us

Wi — Wr & k(T4 — Tr)GB, (247)

provided that the switching interval is short enough compared with the time
scale of the gain variation. Thereofre, the effect of the gain variation to this
difference output is

AWy — Wg) = k(T — Tp) AG B (248)

and hence the condition for the source detection is now

T S AG
Th—Tg G

(249)

instead of equation (243). This new condition is easily satisfied if we suitably
choose the temperature T low enough to be Tr ~ Ty.

Instead of the noise source, we could use a small antenna like a horn
antenna looking at the sky for the switching observation (Figure 99).

For spectral line sources, quick “frequency switching” between inside and
outside of the spectral lines can be used for detecting the sources against the
gain variation of the receiving system.

Beam switch
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switch-timing control pulse

Figure 99: A switching mode observation using a small antenna.

At frequencies higher than ~ 15 GHz, the radio signal from an astronom-
ical radio source is badly masked by the time variation of the thermal radia-
tion of the atmosphere along with the gain variation of the receiving sysytem.
Also, it is not desirable at the high frequencies to install the switching mecha-
nism in the RF signal transmision system since the switches themselves could
become additional noise sources.

In this circumstance, another technique called “beam switching” is effec-
tive. The beam switching is a quick switching of the antenna beam between
the on—source and the off-source directions and measuring the difference of
the received powers at the two directions (Figure 100).

output
O

Figure 100: Beam switching between the on source and the off source direc-
tions.

Since the on—source output power is

Woource = k(TA + TS)GB~ (250)
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while the off-source output power is
Wy = kTsGB, (251)
the power difference yields
Wource = Wiy = KTAGB. (252)

Therefore, we obtain the antenna temperature Ty by a formula

W, — Wk
T, — source s yT 953
A Wsky S ( )

if we know the system noise temperature Ts. The atmospheric thermal radi-
ation effects are well cancelled out in the above procedure, as far as the two
beam directions are not too much separated on the sky.

Since it is mostly impossible to shake a big antenna with a frequency of
several to tens Hz, as usually required, a vaned—wheel like mirror is rotated
in front of the feed horn for effectively altering the beam direction. The
rotating mirror, which itself is a small antenna of the offset—paraboloidal
shape, periodically intersects and cuts off the beam from the sub reflector
and instead guides the reflected radio wave from another direction of the sky
to the feed horn (Figure 101). Although the beam pattern for the mirror—
reflected radio wave must be wide, distorted and thus quite different from
that of the main beam, the pattern must be good enough to collect the
widespread thermal radiation of the atmosphere (see equations (219) and
(222)). The timing of the sign reversal of the output power is synchronized
to the mechanical rotation of the mirror. The off-source beam is usually
designed to be shifted in the azimuthal direction from the on—source beam
for avoiding effects of the elevation dependence of the atmospheric thermal
radiation.

Since we observe the astronomical source only for about a half of the total
observing time 7, in the above switching mode observations, the signal to

noise ratio is now
TA Br, a
S/N ~ = ,

/ Ts 2
which is by a factor of about /2 smaller than that of the total power mode
observation (equation (239)). But the v/2 times loss is certainly better than
nothing.

The above switching techniques are inevitable for measurements of the
received power (radiometry) from astronomical radio sources by the single
dish radio telescopes. On the other hand, for VLBI observations, and for

(254)
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Figure 101: Beam switching using the vaned-wheel like rotating mirror.

interferometry observations in general, the switching techniques are usually
not used in a direct sense. This is because the receiver noises in the voltages
from different telescopes are not correlated with each other, and therefore
the system noise temperature term Ts does not figure in the interferometer
analog of equation (241) obtained in a correlator output. Nevertheless, the
techniques are still important for VLBI in checking and adjusting the pointing
performance of VLBI telescopes and in measuring single—dish flux densities
of the sources which are necessary for interpreting the VLBI results.

6 Measurements of Antenna Performance

For proper interpretaion of the results of the VLBI observations, accurate
knowledge of the basic performance parameters of the component telescopes
is necessary. Therefore, the performance must be measured. Moreover, the
measurements must be repeated periodically, since the parameters are more
or less time variable depending on the environmental conditions, the system
improvement works and the ages of the telescopes. The measurements are
also important for quickly finding and repairing possible mulfunctions in the
antenna system.
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Figure 102: Room-Sky measurement device in a upper cabin of a VERA
antenna.

6.1 System Equivalent Flux Debsity (SEFD) and other
parameters

The most important parameters to be regularly measured are the system
noise temperature Ts and the aperture efficiency 14 which figure in a quantity
called “system equivalent flux density” often denoted as SEFD. The SEFD

is defined as
2kTs  2KkTs  8kTs

A, maA,  nanD?’

where the last term is for a circular aperture antenna of diameter D, so that

SEFD =

(255)

Li__S,
Ts SEFD’

(256)

where again k is the Boltzmann constant, A, is the effective aperture, A,
is the geometrical aperture, T4 is the antenna temperature and S, is the
effective flux density of an astronomical radio source. Therefore, if we know
both S, of a source and SEFD of a telescope, we can easily calculate an
expected signal-to—noise ratio to be obtained when we observe the source
by the telescope on the basis of a suitable equation like equation (239). The
SEFD values are widely listed in the system documents of the VLBI networks
as indicators of the sensitivities of the component telescopes. For example,
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SEFD of an antenna with diameter 20 m, aperture efficiency 0.6 and system
noise temperature 100 K is 1465 Jy. Of course, the smaller the SEFD, the
better the system performance is.

Other important quantities are the receiver noise temperature Trx and
the pointing accuracy oy of the telescope, which must be carefully monitored
for checking the system status. Also, the optical depth of the atmosphere 7,4,
is regularly measured as an parameter showing the observational condition
of the telescope site.

6.2 Measurement of the Receiver Noise Temperature
Trx

The receiver noise temperature Trx is measured usually in a scheme shown
in Figure 103 known as “hot—cold method”.

gain G
. output

oo Receiver systemt—O
TRX
T. Ta
Cold load Hot load

Figure 103: Measurement of the receiver noise temperature using hot and
cold loads with known temperature values.

When the hot and cold loads with known temperatures Ty and Ty, (for
example, two resistors one in the room temperature and another cooled by
the liquid nitrogen) are switched, the output power values Wy and Wy are

WL - k<TL+TRx>GB
Wy = k(Ty+ Trx)GB, (257)
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where G and B are the total gain of the receiving system and the observed
bandwidth, respectively. Therefore, introducing a factor

Wy Tu+Tgx
Wy Tp+Trx'

Y

we obtain the Trx and G'B by equations

Ty —yT
Ty = H—YLlL
y—1
Wy —Wp
GB = ————. 258
k(Tyg —T1) (258)

In geodetic VLBI antennas observing at 2 GHz and 8 GHz, switching
schemes such as shown in Figure 103 are often builtin in the receiving system
for regular monitoring of the receiver noise temperature. In high frequency
antennas, two absorbers one in the room temperature and another immersed
in the liquid nitrogen are often used to cover a feed horn one by one, instead
of the switching mechanism shown above.

6.3 Measurement of the System Noise Temperature

In many VLBI antennas, noise diodes with known noise temperatures are
used for measurements of the system noise temperature. The noise power of
temperature Ty p from a diode is intermittently added through a wave guide
coupler to the input signal of the antenna looking at the blank sky, as shown
in Figure 104.

The output powers of the receiving system when the noise power is added
and when it is off are

Wyp = k(Typ+ Ts)GB
Wy = kIsGB, (259)

and hence
WND - Weky _ TND (260)
Wsky TS
where the system noise temperature Ts includes contributions from the re-
ceiver noise, the ground pickup and the atmospheric thermal radiation as

shown in equation (233). Therefore, introducing a factor y defined now as

Whnp
)
Wky

Y
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Figure 104: Measurement of the system noise temperature using a noise
diode of the known noise temperature.
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we obtain the system noise temperature

~ TInp

Ts = .
S y—1

(261)

The system noise temperature as given in the input—equivalent form of equa-
tion (230) can be easily measured indeed. In VLBI observations, the mea-
surements of the system noise temperature are usually highly automated and
conducted in real time for every scan of radio sources.

6.4 System Noise Temperature and Antenna Temper-
ature Referred to the Outside of the Atmosphere
T and T

The system noise temperature given in equation (233) and measured using
the noise diode as described above is “referred to the antenna on the ground”,
that means the input point for both T4 and Ty is chosen at the front side
of the antenna. In VLBI observations at frequency higher than ~ 15 GHz,
however, the signal from a radio source received by an antenna could be
heavily attenuated by a factor of e~ due to the atmosphere with an optical
depth 7,4, which often reaches 0.3 (e~ ~ 74%) or worse. It is much nicer
for many astronomers to know the antenna temperature “referred to the
outside of the atmosphere”, which means not attenuated by the atmosphere,
in order to study the intrinsic properties of the radio source. But if we shift
the input point for the antenna temperature to the outside of the atmosphere,
we have to refer also the system noise temperature to the outside of the
atmosphere, too. They are usually denoted as T and 77} and related to the

Nsphe}ﬁ_

Figure 105: Input points within and outside the atmosphere.

ordinary Ts and T4 as

Ty = Tge_mtm
Ty =Tye ™m, (262)
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or

T; = TSeT‘”m = (TRX =+ Tant)eTatm + Tatm (eT‘“m - 1)
5 = Tae™m. (263)

6.5 Measurement of the Tgx

There is a clever method to directly measure the system noise temperature
TS and then the antenna temperature 77} referred to the outside of the at-
mosphere. In fact, the 7% can be measured by a simple method called as
“R—Sky” or “Room—Sky” method where the feed horn of the antenna is cov-
ered and uncovered by an absorber at the room temperature 7,.,,, as shown
in Figure 106.

gain G
output

Receiver system o

Trx

Figure 106: Measurement of the system noise temperature referred to the
outside of the atmosphere by the R—Sky method.

For simplicity, we ignore the ground pickup effect T,,; in euation (233).
In a well designed radio telescope antenna, the side lobe level is usually well
suppressed so that T,,; < 10 K even at the low elevation.

When the absorber is taken off from the feed horn, the antenna looks at
the blank sky and produces an output power

Wiy = kT5e™ ™GB = k[Trpx + Tomm(1 — e ™™)|GB, (264)
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where T, is the physical temperature of the atmosphere. On the other
hand, when the feed horn is covered by the absorber of temperature T, o,
the output power is

Wroom = k(TRX + Troom)GB' (265)

If we adopt here a reasonable assumption that Ty, = Troom (this must be
correct with an accuracy usually better than a few percent since both of them
must be around 300 K), then we have

Wroom - Wsky = kTroome_Tatm GBv (266)

and therefore W -
sky S

= i 267

Wroom - Wsky Troom ( )

If we introduce a factor y defined as

(268)

we obtain the system noise temperature referred to the outside of the atmo-

sphere
Troom

y—1

T: = (269)

6.6 Measurement of the Aperture Efficiency 74

If we switch the telescope beam between directions of a source and the blank
sky using the beam switch mechanism we saw earlier, we obtain the difference
of the output powers

Wsource = k(TZ+T§)6_TatmGB
Wy = kTie ™mGB. (270)

Therefore, we easily get the antenna temperature referred to the outside
of the atmosphere if we know the sytem noise temperature referred to the
outside of the atmosphere T¢ by an equation :

Wsource - Ws

I y 271
A Wsky S ( )

If the radio source observed is a standard source with known effective flux
density S, and is much more compact than the beamwidth, we can calculate
the effective aperture A, from equation (220) as

2kT

AEZT]AAg: S s

(272)
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where A, is the geometrical aperture, and therefore the aperture efficiency

kTS SKT;
NS, DS,

(273)

where the expression in the last term is for a circular aperture antenna with
diameter D.

If the source is so bright that any short term variation of the receiver gain
or the atmospheric noise can be ignored, we can just drive the telescope to
switch the directions when the beam switching mechanism is not available.

The best standard sources are bright planets like Jupiter or Venus if
the telescope beam is not narrower than their sizes, since their brightness
temperatures are reliably known. Strong extragalactic AGN’s like 3C84,
3C273, ... could also be used if their flux densities of the date are known.

6.7 Chopper Wheel method for Precise Measurement
of the Antenna Temperature 717}

In order to accurately measure the antenna temperature 7 and aperture
efficiency 74, it is desirable to simultaneously measure the system noise tem-
perature 7, too. For this purpose, one can use a method known as “absorb-
ing disk method” or “chopper wheel method”. In this method, a rotating
vaned—wheel like device is used which is much alike with the one used in the
beam switch, but an absorber of the known temperature 7T, is attached to
one of the vanes in addition to the mirror. Thus the telescope can now look
at the source direction, the mirror-reflected blank sky, and the absorber in
turn within a short period of one revolution which is well less than 1 second
(Figure 107). Here we again ignore the small ground pickup effect T;,,;. Since

i absorber
absorber g

Figure 107: Absorbers and mirrors in the rotating vaned-wheel used in the
chopper—wheel method.
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we now have three output powers nearly simultaneously

Wiouwrce = k[The ™™ + Trx + Totm(1 — e )]G B,
Way = k[Trx + Ton(1 = €7™)|GB = kT5e ™GB,
Wioom = k(Lroom + Trx)GB, (274)
we directly obtain the antenna temperature referred to the outside of the
atmosphere

Wsource - Wsky
Trooma 275
Wroom - Wsky ( )

if we again assume Ty, = Troom-

T, =

6.8 Measurement of the Optical Depth of the Atmo-
sphere 7.,
— sec z Method

The attenuation of the radio signal due to the atmosphere can be well repre-
sented by a model which assumes a plane—parallel atmospheric layer ignoring
the curvature of the Earth’s surface (Figure 108). In such a model, the opti-
cal depth of the atmosphere 7,,, which is approximately proportional to the
path length within the atmosphere, depends on the zenith distance z (which
is the angle of a direction from the zenith direction) as

Tatm = To SEC 2. (276)

zenith

e

To z Tatm

atmosphere

Figure 108: sec z dependence of the optical depth 7,4, in the plane—parallel
model of the atmosphere.

Let us use the R-Sky method to measure the output powers when the feed
horn is covered and uncovered by the absorber with the room temperature
Troom, ignoring again the small T,,;. Then we have

Wsky = ]{J[TRX + Tatm(1 — eiTatm)}GB,
Wroom = k(TRX + Troom)GB- (277)
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and, assuming again T}..0m = Tutm,
Wioom — Wty = kT roome™ ™™ GB. (278)
Therefore, taking the logarithm of equation (278), we obtain
—In(Wyoom — Wiry) = 108ec 2 — In(kT}00,, GB), (279)

in view of equation (276).

Therefore, if we measure the W,.,,,, — Wy, at several values of zenith dis-
tance z, and if we assume that 7,,,,,G B is constant during the measurement,
then we obtain the zenith optical depth 7y as the inclination of a straight line
fitted to the measured data in the sec z — [— In(W,.pom — Wiy, )| plane, as shown
in Figure 109.

Knowing the 7y and therefore 7., = 79 sec z, we can estimate the receiver
noise temperature Trx as well, using measured values of T = Trxe ™ +
Totm (€7 — 1).

sec z Measurement of the Optical Depth of the Atmosphere
4.2 T T T T I

4.1

39 -
3.8 - -
3.7 + —
3.6 n
35 | —
34 | —

- In(Wabs - Wsky)

3.2 .
3_1 | | | | |

secz

Figure 109: An example of the secz — [—In(Wipom — Wary)| plot of the
measured data.

It is desirable to conduct the hot—cold measurement of the receiver noise
temperature in parallel with the sec z measurement, in order to monitor the
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possible gain variation effect during the measurement and check the consis-
tency of the Trx values estimated in the sec z and hot—cold methods.

It is highly desirable also to regularly measure the atmospheric optical
depth, hopefully every day, for statistical study of the observational condition
of the site. In particular, it will be useful to compare the measured relation-
ship between the system temperature 7¢ and the optical depth —7,,, (or the
transparency e ") during 1 year, say, with the theoretical prediction given
in equation (263) and illustrated in Figure 110. We will then be able to see if
the underlying assumptions of the equation well hold and Trx is sufficiently
stable for a year or so.
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Figure 110: T — transparency e~ ™ relation expected from equation (263).

For efficient sec z measurements, we need a good automatic operation
software, which would point the radio telescope to desired sky directions
with different elevation angles, drive the “R—Sky” measuring instrument, read
power—meter outputs at “room” and “sky” states, plot figures such as Figure
109, calculate T4, T and Trx, and store the results to an appropriate
database.
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6.9 Pointing Calibration and Pointing Accuracy oy

Even in the well manufactured antennas, the azimuth axes may not be ex-
actly parallel to the vertical lines at their sites. Likewise, the elevation axes
may not be strictly perpendicular to the azimuth axes. In the antenna specifi-
cations, tolerance values for the axis—alignments are usually set to be at 0.°01
level, but such a large axis—offset could easily cause pointing errors (offsets)
exceeding the accuracy requirement of ~ 0.1A/D in equation (213). Also,
the gravitational yielding of the antennas causes noticeable pointing errors
mainly in the elevation direction. These pointing errors are “systematic”
in the sense, that we obtain the same error values repeatedly in the same
direction of the sky. But this means that they are predictable as functions
of the azimuth and the elevation of the telescope beam direction.

Therefore, these systematic errors must be estimated and calibrated be-
fore starting regular scientific observations. The pointing accuracy oy, which
characterizes more or less random errors of the telescope pointing due to me-
chanical inaccuracy of gears, bearings, as well as unpredictable deformations
caused by the gravity and the wind, must be determined after removing the
systematic deviations. Actually, the pointing accuracy is calculated from
the residuals of the least—squares fitting of a number of parameters, char-
acterizing systematic errors, to the measured values of the pointing errors.
Hereafter, we call these parameters as ‘offset parameters’.

Since the offset parameters may vary in time due to the mechanical change
in the antenna structure, the measurements must be repeated periodically
once a year or more, for keeping the best system performance.

6.9.1 Pointing Model

Let us consider a model which describes a functional dependence of the sys-
tematic pointing error on offset parameters, assuming that we observe a radio
source located in azimuth Az and elevation Fz with an Alt—Azimuth mount
antenna. Here we adopt a convention that the azimuth is measured eastward
from the North, i.e., Az = 0° at the North, and Az = 90° at the East.

Following 8 quantities are usually regarded as most important offset pa-
rameters for Alt—Azimuth mount antennas:

1. tilt angle of the azimuth axis in the North-South direction : a
2. tilt angle of the azimuth axis in the Fast—West direction : b

3. offset of the origin of the azimuth encoder (angle detection device), plus
tilt angle of the elevation axis in the azimuthal direction : ¢
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4. tilt angle of the elevation axis in the elevational direction : d

5. offset of the origin of the elevation encoder, plus tilt angle of the beam
axis in the elevational direction : e

6. tilt angle of the beam axis in the azimuthal direction : f
7. cosine coefficient of the gravitational yielding in elevation : g

8. sine coefficient of the gravitational yielding in elevation : h.

Parameters a — f represent axis offset effects, i.e., effects of misalignments
of telescope axes, while parameters g and h represent elastic deformation ef-
fects. In the present level of antenna manufacturing technology, these offset
parameters are quantities of the order of a few minutes of arc, or smaller.
Therefore, it is sufficient to consider the pointing model in a linear approxi-
mation with respect to the small offset parameters.

Figure 111: Unit vectors for describing the axis—offsets of an antenna.

The axis—offset angles a, b, ¢, d, e and f correspond to small rotation
angles around directions shown by the unit vectors 24, 22, 23, 24, 25 and 2¢g in
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Figure 111. Here we adopt the ‘right—handed screw rule’ for the direction of
the rotation, i.e., the positive rotation angle corresponds to the clock—wise
rotation, viewed towards the direction of the unit vector.

In Figure 111, 24, %2, and 23 are basis vectors of the horizontal coordinate
system at the antenna site. 23 is directed towards the zenith, while 2; and 2o
are directed towards the South and the East, respectively, in the horizontal
plane. The 23 is the vertical axis, towards which the azimuth axis of the
antenna must be directed, in an ideal case when there is no systematic axis
offset.

14 is directed towards azimuth Az in the horizontal plane, which is the
azimuth of the radio source at the time of the observation.

5 is chosen towards azimuth Az + 90° in the horizontal plane. The 25 is
the direction, along which the elevation axis of the antenna must be aligned,
in the ideal case when there is no systematic axis offset.

ig is chosen in a direction with azimuth Az and elevation El—90°, where
El is the elevation of the radio source at the time of the observation.

15, ¢, and a unit vector z,, which is directed towards the radio source
with azimuth Az and elevation EI, form a right-handed orthogonal triad.
The 2, is the direction, towards which the beam axis of the antenna must be
oriented, in the ideal case when there is no systematic axis offset.

Unit vectors 24, and 42g;, which are directed towards azimuthal and el-
evational directions in a plane tangent to the celestial sphere at the radio
source position, are related to 5 and g, as

s = A, (280)
ic = —im, (281)

as evident from Figure 111.

In the linear approximation, the pointing error Az, is expressed in terms
of the offset of the unit vector 4., which represents the direction of the actual
telescope beam axis, from the one in the desired direction ,:

Ai, =i, —i,. (282)

The azimuthal and elevational components of the pointing error can be ex-
pressed, in the linear approximation, as:

cos EIAAz = Aty -ia.,
AEl = Ai,-1ig. (283)

These are the quantities which we can measure in “pointing measurements”,
as we will see later.
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Now let us derive the functional dependence of these azimuthal and ele-
vational components of the pointing error on the offset parameters, which is
nothing but the pointing model we are looking for.

In the linear approximation, we can separately consider the effects of the
axis offsets and the elastic deformation, and then sum up the results to obtain
the total effect. Therefore, we first consider the axis offset effects, assuming
that the radio telescope antenna is a rigid body.

From the theory of the rotational dynamics of the rigid body, we know
that, if a rigid body rotates around an axis ¢, where ¢ is a unit vector, by a
small angle Af, any vector @ fixed to the rigid body is displaced by:

Az = At X x, (284)

in a linear approximation with respect to Af. We can introduce here a vector
of small angle rotation A® as:

AO = AGi. (285)
Then, equation (284) can be expressed as
Az = A8 x . (286)

It is known that the vectors of small angle rotations can be summed up as
ordinary vectors in the linear approximation with respect to the small angles.
Since, in our present problem, a rotational displacement of the radio telescope
antenna is composed of rotations by small angles a, b, ---, f around the six
unit vectors %1, 29, - -+, 26, the total rotation angle vector of the antenna A®
is expressed by:

AO = CL’I:l + blg + C’I:3 + d7,4 + 6i5 + f‘lﬁ (287)

The angular offset of the telescope beam axis Az from the desired direc-
tion z,, due to the superposed axis offset effects, is then expressed as:

Al = AO X i,. (288)
Now, it is evident from Figure 111 and equations (280), (281) that

i3 =sin Bl i, + cos Elig, (289)
iy = cos Bl1, —sin Elig. (290)
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and

g

iy =

cos(180° — Az) 14 + sin(180° — Az) 45

—cos Az 14 + sin Az 15

—cos Az cos Bli, +cos Az sin Eltg + sin Azt 4.,

sin(180° — Az) 44 — cos(180° — Az) 45

sin Az 24 + cos Az 15

sin Az cos Bl1, —sin Az sin Elig; + cos Az 1 4,.

Taking into account that

we obtain, from equations

21 X 1,
2o X T,
13 X T,
7:4X’i*
15 X 1,

'I:GX'I:*

1, X 1,
iAz X i*

iEl X 7:*

(280), (281), (289), (290), (291), and (292),

0,
e,

—Az,

—cos Az sin Eliy, +sin Az g,

sin Az sin El 14, + cos Az gy,

—cos Ela.,

sin Kliy,,

(258

1A

(291)

(292)

(293)

Therefore, in view of equations (287) and (288), we have the following ex-
pression for the beam offset due to the axis offset effects:

Agf

*

= AO x 1,
= a(—cosAz sin Blig, +sin Az ég)
+b (sin Az sin Eli4, + cos Az i)
—ccosFElta, +dsinElia, +etg + fia..

(300)

Consequently, we obtain the azimuthal and elevational components of the
beam offset due to the axis offset effects, using equation (283),

cos BFIANAZ* =

AFEI" =

Az

*

“ Az

—a cos Azsin Bl + b sin Azsin El — ¢ cos El + d sin Bl + f,

A

*

g

a sin Azcos Az + b cos Az + e.
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The main terms of the elastic deformation effect, which are the cosine and
sine of elevation terms due to the gravitational yielding of the radio telescope
antenna, are just added to the elevational component of the above equations
(301), and therefore, we obtain the total beam offset:

cos FIANAz = —acosAzsin El+bsinAzsin El — ¢ cos Bl + d sin Bl + f,
AFEl = asinAzcos Az +b cos Az + e+ gcos Bl + hsin El. (302)

Note that signs of the terms in the above equations may differ in different
literature, depending on senses of the rotation angles.

6.9.2 Pointing Measurement

Now, if we measure the azimuthal and elevational offsets of the actual beam
direction from the desired one at many directions, we can fit the equation
(302) to the measured values to estimate the 8 parameters from a to g and,
from the residuals, the pointing accuracy oy, by the method of the least
squares. An example of the sky coverage of the water maser sources observed
in a pointing measurement at 22 GHz is shown in Figure 112.
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Figure 112: An example of the sky coverage of the sources in a pointing
measurement.

Sometimes it is difficult to solve all 8 parameters due to the strong cor-
relations among some of the parameters. In such a case, we have to assume
reasonable values for some of the parameters and solve the least squares
equations for rest of the parameters.

It is empirically known, for some of the wheel & track type antennas,
that inclusion of additional terms with cos(2A4z) and sin(2Az) dependences
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into the pointing model better fits the results of the pointing measurements.
In such a case, we have to increase the number of offset parameters to 12, or
S0.

The measurements are usually conducted by so—called “5 points scan”
method. In this method, power from a radio source with well determined
celestial position is measured at a telescope direction determined by a certain
set of values of the azimuth— and elevation encoders (or angular scales) of the
telescope, which are predicted by the source tracking software and instructed
by the antenna control software, and at 4 more directions in North, South,
East and West sides of the instructed one with the angular separation of
roughly a half of the HPBW (Figure 113).

o

o o o

—
0.5 HPBW

o

Figure 113: 5 points scan.

Given that the celestial positions and predicted Az and El values are
accurate enough (at a level better than 1 arcsecond, say), the power must
be strongest at the instructed direction and equally lower at four other di-
rections, if the telescope does not have any systematic axis—offsets and grav-
itational yielding. If not, however, we will get an asymmetrical distribution
of the measured powers at the 5 points. It is a usual practice to fit a two—
dimensional Gaussian beam model to the measured power values to derive the
offsets cos EIAAz and AFEl between the actual and required beam directions
which will be fitted by the model given in equation (302).

To achive the required accuracy of the prediction, the source tracking
software must properly take into account major astrometric and geophysical
effects including the abberation, the precession—nutation and the atmospheric
refraction effects.

The radio sources used for the pointing measurements must be compact,
strong enough, and must have well determined values of the position co-
ordinates. Strong astronomical maser sources are often used for frquency
bands, where such masers are available. For maser sources, we can easily
obtain the antenna temperature value by comparing the ‘in-line” part and
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Figure 114: 5 points scan result at 43 GHz for SiO maser source R Cas
obtained at Iriki station of VERA which shows southward offset of the beam.
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the ‘out—of-line” part of the frequency spectrum, as shown in Figure 114.
For other frequency bands, strong continuum sources such as quasars or su-
pernova remnants are used with appropriate antenna temperature measuring
instruments.

For efficient pointing measurements, we need a good scheduling software
and a well automated antenna operation software, which would enable us
to quickly observe ‘pointing sources’ one by one at different sky directions,
performing 5 points scans and automatically getting pointing offset values
by the Gaussian fitting. In the case of the maser sources, we must correctly
choose the “in—line” frequency range of the maser spectrum, where a desired
line component is located. Since the range periodically shifts in frequency
due to the Doppler effect assocaited with the orbital motion of the Earth, we
need a software which calculates the “in—line” frequency range of date, from
the local standard of rest frequency value (or from the radial velocity vrgr,
referred to the Local Standard of Rest).

In massive star forming regions, maser features are often spread over a
wide area of the sky, exceeding tens of arcseconds in size. Therefore, we have
to choose the “in-line” range, so that it covers a strong maser feature or
features, which are concentrated within a compact region much smaller than
the antenna beam.

6.10 Beam Pattern Measurement

Power pattern of an antenna beam can be derived by measuring received
power (or antenna temperature) of a compact strong radio source, in terms of
the “grid-mapping” method (Figure 115) or the “drift-scan” method (Figure
116).

In the grid—mapping method, the received power values are measured at
centers of a number of grids in the sky, chosen around the source with equal
spacing, typically corresponding to a half of the expected beam size, in right
ascension and declination. The results are analyzed with standard single—
dish imaging softwares, and two—dimensional beam patterns are obtained.
An example is shown in the lower panel of Figure 115.

In the drift-scan method, the received power is measured while a source
passes in front of the antenna beam due to the diurnal motion, or when
the antenna is driven, so that the beam crosses the source in azimuth and
elevation directions. In this case, one dimensional beam pattern, as shown
in Figure 116, is obtained at each scan.

In the both methods, the antenna pointing must be well calibrated, and
radio source positions must be precisely known. Also, the measurements must
be done within a short time under the clear sky, in order to avoid atmospheric
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Figure 115: Grid—mapping method for beam pattern measurement (top), and
a resultant beam pattern (bottom) (courtesy of the VERA group, 2004).
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Figure 116: Beam patterns obtained with the drift-scan method at 22 GHz
(top) and at 43 GHz (bottom) (courtesy of the VERA group, 2002).

disturbances. It is highly desirable to have automated antenna—operation,
data acquisition and analysis softwares for the beam pattern measurements.
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