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1 ‘Windows’ for Ground–based Astronomy

Figure 1 shows how the Earth’s atmosphere transmits electromagnetic waves
from the Universe. The curve over the hatched area in this figure corresponds
to the height in the atmosphere at which the radiation is attenuated by a
factor of 1/2.

Figure 1: ‘Windows’ for ground-based astronomy (from Rohlfs & Wilson,
2001).

This figure shows that the Earth’s atmosphere is largely transparent in
the radio (15 MHz – 300 GHz) and visible light (360 THz – 830 THz) regions
of the electromagnetic spectrum. These two regions are the main ‘windows’
for ground-based astronomical observations. VLBI (Very Long Baseline In-
terferometry) is one of the techniques used to observe astronomical radio
sources through the ‘radio window’.
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2 Various Classifications of Astronomical Ra-

dio Sources

There are several ways to classify astronomical radio sources. Typical clas-
sifications are:

• – Thermal source
Source emitting via a thermal mechanism (e.g. blackbody radia-
tion),

– Non-thermal source
Source emitting via a non-thermal mechanism (e.g. synchrotron
radiation, inverse Compton scattering, annihilation radiation, maser
emission, etc.),

• – Continuum source
Source emitting over a broad range of frequencies,

– Spectralline source
Source emitting in narrow lines at specific frequencies,

and

• – Galactic source
Source inside our Milky Way Galaxy,

– Extragalactic source
Source outside our Galaxy.

3 Spectra of Typical Continuum Radio Sources

Figure 2 shows typical spectra of continuum radio sources.
These spectra are characterized by a quantity called ‘spectral index’ α, de-
fined by the formula: Sν ∝ ν−α, where Sν is a quantity called the ‘flux
density’ [unit: Jy (Jansky) ≡ 10−26Wm−2Hz−1], which is a measure of the
strength of the radiation from a source.

Thermal and non–thermal sources usually show different spectral indices,
namely:

α ∼= −2 for thermal sources,
and

α ≥ 0 for non-thermal sources.
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Figure 2: Spectra of galactic and extragalactic continuum radio sources (from
Kraus, 1986).

4 Spectralline Radio Sources

An example of a thermal spectralline source showing many molecular lines
is given in Figure 3.

Examples of spectra of non-thermal maser line sources obtained in test
observations for the VERA (VLBI Exploration of Radio Astrometry) array
in Japan are shown in Figures 4, 5, and 6.
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Figure 3: Thermal molecular lines observed in the Orion-KL star–forming
region (Kaifu et al., 1985).

Figure 4: H2O maser lines in Cep A (left), and RT Vir (right) (courtesy of
VERA group, Japan, 2002).
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Figure 5: SiO maser lines in Orion-KL (left), and R Cas (right) observed in
pointing tests for a VERA antenna (courtesy of VERA group, Japan, 2002).

Figure 6: H2O maser lines in W49 N and OH43.8, observed simultaneously
with a VERA dual-beam antenna (courtesy of VERA group, Japan, 2002).
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5 Designations of Astronomical Radio Sources

There are many designation systems for naming radio sources. Examples
are given in the following. As a result, radio sources are often identified by
several different names.

• IAU 1974 system of designation (‘IAU name’, see, e.g., Explanatory
Supplement to American Astronomical Almanac)

– identifies a radio source by a six, seven, or eight-digit number,
such as 0134+329, which tells us that the right ascension of the
source is 01h 34m, and its declination is +32.◦9 (usually in the
B1950 equinox system).

– sometimes source types or catalog acronyms are added, e.g., pul-
sars are called ‘PSR0950+08’, and sources from the Parkes Sky
Survey as ‘PKS1322-42’.

• 3C-name, 4C-name

– identifies an extragalactic radio source by a serial number in the
Third Cambridge Catalog, and by declination in the Fourth Cam-
bridge Survey Catalog.

– examples are 3C84, 3C273, 3C345, 4C39.25, etc.

• W-name

– is based on Westerhout’s (1958) catalog of HII regions.

– examples are W49 N, W3(OH), W51 M, etc.

6 Designations of Frequency Bands

The basic unit of radio frequency is Hz (Hertz: cycle per second). In order
to describe high frequency, typically used in radio astronomical observations
or communications, we frequently use the following secondary units: kHz
(kilohertz: 103 Hz), MHz (megahertz: 106 Hz), GHz (gigahertz: 109 Hz),
and THz (terahertz: 1012 Hz).

Radio frequency bands used in astronomical observations, as well as in
communications, are designated by one or a few alphabetic characters. Two
systems of designations are shown in Figure 7.

In radio astronomy, IEEE STD-521-1976 designations have been used.
Examples are:
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Figure 7: Frequency designations.

• L–band : GPS satellite, observations of OH masers,

• S– and X–bands : geodetic VLBI observations,

• K–band : observations of H2O masers, and

• Q–band : observations of SiO masers.

7 Basic Quantities in Radio Astronomy

The following quantities are commonly used in radio astronomy to charac-
terize radio waves coming from celestial bodies.

7.1 Intensity (Specific/Monochromatic Intensity) Iν or

Brightness Bν

The intensity Iν (or brightness Bν) is the quantity of electromagnetic radia-
tion energy incoming from a certain direction in the sky, per unit solid angle,
per unit time, per unit area perpendicular to this direction, and per unit
frequency bandwidth with center frequency ν. The SI unit of this specific
(or monochromatic) intensity is thus: W m−2 Hz−1 sr−1 (Figure 8).

In terms of the monochromatic intensity Iν , the power dW of radiation
coming from a direction s within a solid angle dΩ, through a cross-section of
area dσ with a normal inclined by an angle θ from the direction s, within a
frequency bandwidth dν centered at ν, is given by:

dW = Iν(s) cos θ dΩ dσ dν. (1)
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Figure 8: Definition of Specific/Monochromatic Intensity Iν (or Brightness
Bν).

7.2 Constancy of the Monochromatic Intensity Iν

The monochromatic intensity Iν remains constant along a ray path, irre-
spective of the distance from the emitting source, as long as no absorption,
emission, or scattering occurs along the path. An explanation of this con-
stancy may be given as follows.
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Figure 9: Constancy of the monochromatic intensity Iν along the ray path.

Let us assume a spherically symmetric distribution of radiation from an
emitting source at the center, without any intervening absorption, emission,
or scattering, as shown in Figure 9. Let a cone-like ray tube of constant
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opening angle intersect a sphere of radius r, forming a cross–section of area
σ, and let the source be seen to subtend a solid angle Ω at this radius. The
power of the radiation with bandwidth ∆ν passing through this cross–section
is W = Iν Ω σ∆ν, which must be constant at any radius along the tube, as
long as the radius is much larger than the source size. Now, the solid angle of
the source Ω and the area of the cross–section σ vary as Ω ∝ r−2 and σ ∝ r2,
respectively. Therefore, the monochromatic intensity Iν = W/(Ω σ ∆ν)
must be constant along the path.

7.3 ‘Spectral Flux Density’ or ‘Flux Density’ or ‘Flux’

Sν

The spectral flux density Sν is the quantity of radiation energy incoming
through a cross section of unit area, per unit frequency bandwidth, and
per unit time. A special unit called ‘Jansky (Jy)’ is widely used in radio
astronomy for the spectral flux density. This unit is defined as: 1 Jy = 10−26

W m−2 Hz−1.

s

θ

∆σ

Figure 10: Definition of spectral flux density Sν.

The spectral flux density Sν is related to the intensity Iν by an integral
over a solid angle Ω:

Sν =
∫∫

Ω

Iν(s) cos θ dΩ,

=
∫∫

Ω

Iν(θ, φ) cos θ sin θ dθ dφ, (2)
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where Ω could be, for example, a solid angle subtended by a radio source
(see Figure 10).

7.4 Power/Energy/Radiation Flux Density S

The power/energy/radiation flux density S is the quantity of radiation en-
ergy, over the whole frequency range, incoming through a cross section of
unit area, per unit time. Therefore,

S =

∞
∫

0

Sν dν. (3)

When we are interested in the “received” power flux density only, we
restrict the range of integration to the observing bandwidth ∆ν, i.e.,

S =
∫

∆ν

Sν dν. (4)

The unit of power flux density is: W m−2.

7.5 Spectral Energy Density per Unit Solid Angle uν

The spectral energy density per unit solid angle, uν(s), is the volume density
of the radiation energy incident from a certain direction s, per unit solid
angle, and per unit frequency bandwidth. The unit is J m−3 Hz−1 sr−1.

c dt

d
s

σ

Figure 11: Radiation energy per unit solid angle in a tube.

Let us consider a cylindrical tube with a cross section of area dσ perpen-
dicular to the ray propagation direction, and with a length cdt, which is the
distance travelled by the radiation during a time interval dt at light speed c
( = 2.998 × 108 m s−1) (see Figure 11). The radiation energy dUν (J Hz−1

sr−1) per unit solid angle, and per unit frequency bandwidth, contained in
the cylinder may be expressed either in terms of the spectral energy density
per unit solid angle, uν(s), or in terms of the intensity Iν(s), as:

dUν = uν(s) cdt dσ,

dUν = Iν(s) dt dσ. (5)
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Therefore, these quantities are related to each other by:

Iν(s) = c uν(s). (6)

7.6 Spectral Energy Density Uν

The spectral energy density Uν is the volume density of the energy of the
radiation, per unit frequency bandwidth, incoming from all directions (Figure
12).

Figure 12: Spectral energy density: energy of radiation coming from all
directions, contained in a unit volume.

Therefore,

Uν =
∮

uν(s)dΩ =
1

c

∮

Iν(s)dΩ. (7)

The unit is J m−3 Hz−1.

8 Emission and Absorption of Electromag-

netic Radiation

8.1 Elementary Quantum Theory of Radiation (A. Ein-

stein, 1916)

Let us consider a gaseous medium consisting of a large number of particles
(atoms or molecules) of the same species. Let us also consider that each
particle exists in one of the quantum states Z1, Z2, ..., with energy levels
E1, E2, ... . If Em < En for a pair of states Zm and Zn, a particle can
absorb an amount of radiation energy En − Em in a transition from Zm to
Zn. Also, a particle can emit the same amount of energy in a transition from
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Zn to Zm (Figure 13). The frequency of the absorbed or emitted radiation
is determined by the equation:

hνmn = En − Em, (8)

where h is the Planck constant (h = 6.626 × 10−34 J s).

Z m

E=EnZ n

Z 3
Z 2
Z 1

E=Em

E=E3
E=E2
E=E1

hνmn=En-Em hνmn=En-Em

Figure 13: Energy levels and transitions with emission (left–hand arrow) or
absorption (right–hand arrow) of radiation.

The energy levels here may be distributed continuously (continuum emis-
sion) or discretely (line emission). Note that even in the discrete level case,
the frequency is spread over a finite ‘line width’, due to the Doppler shifts in
randomly moving gaseous media in the universe.

Three kinds of transitions may occur between these two states (Figure
14), as follows:

(1) Spontaneous emission Zn → Zm

The spontaneous emission emerges due to a transition which occurs ‘by
itself’, without any external influence (Figure 15). The probability dfsp for
the spontaneous emission to occur within a small solid angle dΩ towards a
direction -s, within a small frequency bandwidth dν around the frequency
νmn = (En − Em) / h, and during a small time interval dt, must be propor-
tional to dν dΩ dt. Therefore, the probability can be expressed through a
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Figure 14: The three possible transitions between two energy states.

certain coefficient αm
n as:

dfsp = αm
n dν dΩ dt. (9)

-s
dΩ

En

Em

E=

E=

Figure 15: Spontaneous emission of radiation.

(2) Absorption Zm → Zn

Some of the radiation passing through the gaseous medium may be ab-
sorbed in a transition from Zm to Zn, at a frequency around νmn = (En −
Em) / h (Figure 16). The absorption probability dfab for the radiation inci-
dent from a direction within a small solid angle dΩ around s, and in a small
frequency bandwidth dν, during a short time interval dt, must be propor-
tional to dν dΩ dt and to the spectral energy density per unit solid angle,
uν(s), of the radiation itself. Therefore, introducing a proportionality coeffi-
cient βn

m, we have:
dfab = βn

m uν(s) dν dΩ dt. (10)

(3) Induced (or stimulated) emission Zn → Zm

Radiation with a frequency ν incident from a certain direction s may
induce (or ‘stimulate’) transitions of gas particles from higher to lower energy
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dΩ s

u  (s)ν

En

Em

E=

E=

Figure 16: Absorption of radiation.

levels, such that the newly emitted radiation has the same frequency ν, and
the same direction of propagation -s, as the incident radiation (Figure 17).
The probability dfst for the induced (or stimulated) emission to occur in a

dΩ s

u  (s)ν
Em

EnE=

E=

Figure 17: Induced (or stimulated) emission of radiation.

direction within a small solid angle dΩ around -s, and in a small frequency
bandwidth dν around νmn = (En − Em) / h, during a short time interval
dt, must be proportional to dν dΩ dt and to the spectral energy density per
unit solid angle uν(s) of the incident radiation. Therefore, introducing a
proportionality coefficient βm

n , we have:

dfst = βm
n uν(s) dν dΩ dt. (11)
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8.2 Einstein Coefficients

The three coefficients αm
n , βn

m, and βm
n , describing the probabilities of the

three possible transitions:

dfsp = αm
n dν dΩ dt,

dfab = βn
m uν(s) dν dΩ dt,

dfst = βm
n uν(s) dν dΩ dt, (12)

are called the “Differential Einstein Coefficients”. They are usually isotropic,
i.e. they do not depend on the direction of propagation of radiation.

Einstein originally described the transition probabilities in the following
form, for the case of an isotropic radiation field, and with the particles at
rest:

dWsp = Am
n dt,

dWab = Bn
mUν dt,

dWst = Bm
n Uν dt, (13)

where Uν =
∮

uν(s) dΩ is the spectral energy density (in units of J m−3 Hz−1).
The coefficients Am

n , Bn
m, and Bm

n , are called the “Einstein Coefficients”. In
such a case, the spectral lines due to the transitions between discrete energy
levels must be monochromatic lines having no Doppler broadening, since the
particles are at rest. If we introduce f(ν) as the probability distribution of
frequency within a spectral line in a real interstellar medium in motion, the
two sets of coefficients are related to each other, as follows:

αm
n =

Am
n f(ν)

4π
,

βn
m = Bn

m f(ν),

βm
n = Bm

n f(ν). (14)

8.3 Number Density of Photons

Let the number densities of particles (number of particles per unit volume) in
the states Zm and Zn be nm and nn, respectively. Then the number density of
photons emitted by the Zn → Zm transition into the solid angle dΩ around
the direction -s, within the bandwidth dν, during the time interval dt, is
equal to:

nn(dfsp + dfst) = nn(αm
n + βm

n uν) dν dΩ dt.
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Figure 18: Number densities of particles in the two energy states.

On the other hand, the number density of photons in the same solid angle
dΩ, and the same bandwidth dν, absorbed by the Zm → Zn transition during
the time interval dt, is equal to:

nmdfab = nmβn
muν dν dΩ dt.

The differential changes in the number density of photons per unit solid
angle around -s, and per unit bandwidth around νmn = (En −Em)/h, in the
course of the absorption and emission is now given by:

dnp(s, ν) dν dΩ = {−nmβn
muν + nn [αm

n + βm
n uν(s)]}dν dΩ dt.

Therefore, the time variation of the number density of photons is described
by the following equation (Figure 19):

dnp(s, ν)

dt
= (nnβm

n − nmβn
m)uν(s) + nnαm

n . (15)

n

n

n

m

s dΩ

n  (s, ν)  at  t n  (s, ν)  at  t + dtp p

Figure 19: Time variation of the number density of photons.

9 Blackbody Radiation

We now consider the case when the radiation and matter are in thermody-
namic equilibrium. Then, we have the following:
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1. Stationary conditions:
The number of transitions Zm → Zn must be equal to the number of
opposite transitions Zn → Zm. Requiring this stationarity in equation
(15), we have:

nmβn
muν(s) = nn[αm

n + βm
n uν(s)]. (16)

2. Boltzmann distribution:
The probability Pn for a particle to be in a state Zn, with energy level
En, is given by the formula:

Pn = gne
−

En
kT , (17)

where k = 1.381 × 10−23 J K−1 is the Boltzmann constant, T is the
absolute temperature of the medium in Kelvin (K), and gn is the sta-
tistical weight (reflecting in particular the degree of degeneracy) of the
state Zn.

If we denote the number density of all particles as n, the ratio nn/n must
be equal to the probability Pn (at least in the statistical sense). Therefore,
we have

nm

n
= gme−

Em
kT , (18)

and
nn

n
= gne−

En
kT . (19)

Inserting equations (18) and (19) into equation (16), we obtain

e−
Em
kT gmβn

muν(s) = e−
En
kT gn[αm

n + βm
n uν(s)]. (20)

Einstein discussed the implications of this equation, as follows:

1. The energy density per unit solid angle of the thermal radiation must
tend to infinity (uν(s) → ∞) when the temperature of the medium
tends to infinity (T → ∞) in equation (20). Hence, we obtain

gmβn
m = gnβm

n . (21)

Consequently, equation (20) becomes

(e
En−Em

kT − 1)βm
n uν(s) = αm

n . (22)

If we take into account the relation hν = En−Em (hereafter, we denote
νmn = ν for simplicity), the energy density per unit solid angle can be
expressed as

uν =
αm

n

βm
n

1

e
hν
kT − 1

. (23)
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Henceforth, we omit the s dependence in uν, since the RHS of equation
(23) does not depend on any specific direction, as expected from the
isotropic nature of thermal radiation.

2. The energy density per unit solid angle uν must follow the well-known
Rayleigh–Jeans radiation law:

uν =
2ν2

c3
kT, (24)

in the classical limit hν � kT . Therefore, we must require in equation
(23)

αm
n

βm
n

=
2hν3

c3
. (25)

The above discussions thus lead to Planck’s formula of blackbody radiation:

uν =
2hν3

c3

1

e
hν
kT − 1

. (26)

For the intensity Iν , we obtain

Iν = cuν =
2hν3

c2

1

e
hν
kT − 1

, (27)

(see Figure 20). For the energy density Uν , we have

Uν =
∮

uνdΩ = 4πuν =
8πhν3

c3

1

e
hν
kT − 1

. (28)

9.1 Two Extreme Cases of the Planck Spectrum

• Rayleigh–Jeans region (hν � kT , and hence e
hν
kT ' 1 + hν

kT
):

Iν =
2ν2

c2
kT. (29)

Note that thermal radiation in the radio frequency range is mostly in
the Rayleigh–Jeans region.

• Wien region (hν � kT ):

Iν =
2hν3

c2
e−

hν
kT . (30)
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Figure 20: Planck spectrum of black body radiation. Each curve corresponds
to a certain absolute thermodynamic temperature value.
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9.2 Wien’s Law

The peak frequency of the Planck spectrum at a given temperature T is

νmax (in Hz) = 5.8789 × 1010T (in K). (31)

One can easily derive this law by equating to zero the derivative of the
intensity Iν with respect to frequency ν, in equation (27).

This, Wien’s law, explains why stars with higher temperatures appear
bluer, and those with lower temperatures appear redder. Conversely, as-
tronomers infer one of the most important physical parameters of stars, the
surface temperature, from measuring their color.

Can we observe the peak of the thermal blackbody spectrum in
the radio region?

• No hope for thermal radiation from a stellar surface, or from a fairly
warm interstellar cloud.

• For submillimeter waves at around 500 GHz (which are still regarded
as radio waves), we can see the peak if the temperature of the medium
is below 10 K (T ≤ 10 K).

• For example, the cosmic background radiation with T ' 2.7 K has its
peak at around 170 GHz.

9.3 Spectral Indices of Thermal Continuum Radio Sources

We now understand why the spetral indicies α (Sν ∝ ν−α) of thermal contin-
uum radio sources like the Moon, the quiet Sun, and the left half portion of
the spectrum of Orion nebula, are all close to −2 (α ' −2). This is because
thermal continuum sources mostly show Rayleigh–Jeans spectra, Iν = 2ν2

c2
kT ,

in the radio region.

9.4 Stars are Faint and Gas Clouds are Bright in the

Radio Sky

According to the Planck spectrum, the intensity of a hotter black body is
always stronger than the intensity of a colder body, for any frequency range.
On the other hand, the flux density Sν, which we directly detect with our
radio telescopes, is proportional to the product of the intensity Iν and the
solid angle of the radio source Ω (Sν ∝ IνΩ). While the surface temperatures
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Figure 21: Spectra of continuum radio sources (Kraus, 1986; left), and an
optical image of the Moon (right). Do we see such a halfmoon image in radio
waves?
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of ordinary stars are fairly high (several thousands to several tens of thousand
Kelvin), their solid angles, which are inversely proportional to their squared
distances, are very small. For example, if we were to put the Sun at the
distance of the nearest star, which is about 3 light years, or 1 parsec, the
Sun’s angular diameter would be only ' 0.01 arcsecond! As a result, the
flux density 5 × 106 Jy of the quiet Sun at 10 GHz (see Figure 2) would be
reduced down to 125 µJy at the distance of the nearest star. On the contrary,
the interstellar gas clouds, as cold as tens to hundreds of Kelvin, still clearly
shine in the radio sky, because their angular diameters are as large as minutes
to degrees of arc. For example, Figure 2 shows that the flux density of the
Orion Nebula is about 500 Jy at around 500 MHz.

9.5 Stefan–Boltzmann Law

The total intensity I(T ) of the thermal radiation from a black body of tem-
perature T , over the entire frequency range, is given by

I(T ) =

∞
∫

0

Iνdν =

∞
∫

0

2hν3

c2

1

e
hν
kT − 1

dν =
1

π
σT 4, (32)

where σ is the Stefan–Boltzmann constant:

σ =
2π5k4

15c2h3
= 5.6697 × 10−8 W m−2 K−4.

Equation (32) can be derived using the integration formula:
∞
∫

0

2x2n−1

e2πx − 1
dx =

Bn

2n
, (33)

where Bn is the n-th Bernoulli number, and B2 = 1/30.

9.6 Total Blackbody Radiation from a Star or a Gas

Cloud

The power flux density S?, at a surface of a blackbody, which is the power
over the entire frequency range through a cross section of unit area of the
surface (Figure 22), is given by the equation:

S? =

∞
∫

0

Sν dν =

∞
∫

0

π
2

∫

0

2π
∫

0

Iν cos θ sin θ dφ dθ dν

= I(T )

π
2

∫

0

2π
∫

0

cos θ sin θ dφ dθ = π I(T ) = σT 4. (34)
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Figure 22: Thermal radiation from a surface of a black body.

Therefore, the total power F of the blackbody radiation from a spherical
star with radius R is equal to:

F = 4πR2S? = 4πR2σT 4.

The power flux density of the thermal radiation which we receive from a star
or a cloud of solid angle Ω, surface temperature T , and distance r, is from
equation (32):

S = Ω I =
ΩσT 4

π
,

which, for the spherically symmetric case where Ω = πR2/r2, is reduced to

S =
R2

r2
σT 4 =

R2

r2
S? =

F

4πr2
,

as expected.

9.7 Universality of the Relationship among Einstein’s
Coefficients

We derived equations (21) and (25), giving the following relationships among
Einstein’s coefficients:

gmβn
m = gnβm

n ,

αm
n

βm
n

=
2hν3

c3
,

or, equivalently,

gmBn
m = gnBm

n ,

Am
n

Bm
n

=
8πhν3

c3
,
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by assuming thermodynamic equilibrium. However, the resulting equations
above do not contain any quantity characteristic of thermodynamics. This
means that the equations must hold universally, irrespective of whether the
condition of thermodynamic equilibrium is fulfilled. These relationships are
determined by the microscopic interactions between a photon and a particle,
and are not influenced by the environment (temperature, pressure, ... etc.).
We obtained the relationships under the assumption of thermodynamic equi-
librium, where it is most easily derived. Analogously, if you find a big hole
in a road in daytime, you would assume that the hole still exists at night,
when you cannot see it well.

9.8 Another Important Quantity in Radio Astronomy

Brightness Temperature
The brightness temperature TB of a source with monochromatic intensity

(or surface brightness) Iν , is a quantity which is defined by the equation:

TB =
c2

2kν2
Iν. (35)

This is a quantity with the dimension of temperature obtained by a ‘forced’
application of the Rayleigh–Jeans formula to the radiation from any radio
source. If the radiation comes from a sufficiently hot (T � 10 K) thermal
source, without noticeable absorption or additional emission along the prop-
agation path, the brightness temperature must correspond to the physical
temperature of the source. If the source is non–thermal, the brightness tem-
perature has no relevance to any real temperature. For example, for some
maser sources, the brightness temperature could be as high as 1014 K, al-
though the physical temperature values of the ‘masing’ (i.e. maser–emitting)
gas clouds are only several hundreds of Kelvin. The word ‘brightness tem-
perature’ is a jargon term which is used only, but quite frequently, in radio
astronomy.

10 Radiative Transfer

10.1 Phenomenological Derivation of the Radiative Trans-

fer Equation

Radiative transfer theory describes how the intensity varies as radiation prop-
agates in an absorbing and/or emitting medium. The equation of radiative
transfer can be phenomenologically derived as follows:
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Let the intensity Iν change by dIν due to absorption and emission as
the radiation passes through an infinitesimal distance dl (Figure 23). The

s

dl

I  (s, l) I  (s, l + dl)ν ν

Figure 23: Radiative transfer through a cylinder of infinitesimal length.

variation can be described as a sum of two contributions: one due to the
absorption −κνIνdl, and one due to the emission ενdl, where κν and εν are
the following frequency–dependent coefficients:

κν : opacity m−1,
εν : emissivity W m−3 Hz−1 sr−1.

We then obtain the radiative transfer equation in the following form:

dIν

dl
= −κνIν + εν . (36)

10.2 Derivation of the Radiative Transfer Equation from
Einstein’s Elementary Quantum Theory of Radi-

ation

Equation (36) can also be derived from equation (15) obtained in the discus-
sion of Einstein’s elementary quantum theory of radiation:

dnp(s, ν)

dt
= (nnβm

n − nmβn
m)uν(s) + nnαm

n ,

where np is the number density of photons per unit solid angle and per unit
frequency bandwidth, uν is the spectral energy density per unit solid angle,
nm and nn are the number densities of the particles in states Zm and Zn,
and αm

n , βm
n and βn

m are Einstein’s differential coefficients. In fact, using the
relations:

uν(s) = hνnp(s, ν),

Iν(s) = cuν(s),

dl = cdt ,

we can transform equation (15) to:

dIν

dl
= −(nmβn

m − nnβm
n )

hν

c
Iν + hνnnαm

n . (37)
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Therefore, if we denote

κν = (nmβn
m − nnβm

n )hν
c

: absorption and induced emission,
εν = hνnnαm

n : spontaneous emission,
(38)

equation (37) is reduced to the radiative transfer equation (36).

Role of the induced emission
In the resulting radiative transfer equation:

dIν

dl
= −κνIν + εν ,

the opacity κν now contains not only the contribution of simple absorption
but also that of induced emission, as we see in equation (38). According to
equation (21) obtained by Einstein:

gmβn
m = gnβm

n ,

we can now express the opacity κν as

κν = (nm −
gm

gn
nn)βn

m

hν

c
. (39)

If we consider the simple case where the statistical weights of the two states
are equal to each other (gm = gn), the above equation (39) reduces to

κν = (nm − nn)βn
m

hν

c
. (40)

It is worthy to note that the opacity takes on a negative value when the
number density of the particles in the higher energy level is larger than that
at the lower level (nn > nm).

10.3 The Simplest Solutions of Radiative Transfer Equa-
tion

Let us solve the radiative transfer equation (36):

dIν

dl
= −κνIν + εν ,

under the following simple conditions.
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1. When κν = 0,
the solution of equation (36) is just a simple integral:

Iν(l) = Iν(0) +

l
∫

0

εν(l
′)dl′ . (41)

2. When εν = 0,
the solution is an exponential function:

Iν(l) = Iν(0)e
−

l
∫

0

κν(l′)dl′

. (42)

If the medium is homogeneous, i.e. κν = constant everywhere, then

Iν(l) = Iν(0)e−κν l . (43)

Here,
κν > 0 (positive opacity) implies an exponential decay, which arises
from ordinary absorption, and
κν < 0 (negative opacity) implies an exponential growth, which arises
from maser amplification.

Maser Amplification

When the number density nn of particles at a higher energy level En

is, for some reason, larger than nm at a lower energy level Em (such
a situation is called a “population inversion”), the opacity becomes
negative (κν < 0), and the radiation of the frequency corresponding to
the transition between the energy levels is exponentially amplified along
the initial direction of propagation (Figure 24). Since this amplification
is due to induced (or stimulated) emission, it is called a “MASER”
(Microwave Amplification of Stimulated Emission of Radiation). The
same mechanism in the visible light region of electromagnetic waves
is called the “LASER” (Light Amplification of Stimulated Emission of
Radiation).

If the thermal equilibrium condition is fulfilled in the gas medium, the
Boltzmann distribution always ensures nn < nm, and no maser amplifi-
cation can occur. Therefore, maser emission is essentially non–thermal.
We need some “pumping mechanism” which realizes the population in-
version in order to get the maser mechanism to work. In actual inter-
stellar space, strong infrared radiation from stars, or collisions of gas
molecules, may serve as a pumping mechanism.
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incident radiation

induced emission

particle

Figure 24: A schematic view of maser amplification. Induced emission causes
new induced emission, initiating an “avalanche” of maser emission photons
all traveling in a common direction parallel to the incident photon.

Usually, masers are strong radio sources. For example, the brightness
temperature of some H2O masers is as high as 1014 K.

3. In the purely thermal equilibrium case,
we obtain from the detailed balance:

−κνIν + εν = 0, and therefore Iν =
εν

κν
,

and from the Planck spectrum:

Iν = Bν(T ) ≡
2hν3

c2

1

e
hν
kT − 1

,

where Bν(T ) is defined to be the Planck function. From the above
equations, we have a relationship between the emissivity and opacity,
which is called Kirchoff’s law:

εν

κν

= Bν(T ) . (44)

4. Local thermodynamic equilibrium (LTE)
In a fairly wide range of real circumstances in interstellar gas media, and
in laboratory conditions, at a given temperature T , there is the case
when Kirchoff’s law εν/κν = Bν(T ) holds to a good approximation,
but the radiation intensity Iν is not equal to the Planck function
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Bν(T ) at temperature T . Such a case is called “local thermodynamic
equilibrium”, denoted by “LTE”.

In LTE, the radiative transfer equation reduces to

dIν

dl
= −κν [Iν − Bν ] . (45)

Then, introducing the “optical depth” τν , which satisfies

dτν = −κνdl, (46)

we can further transform equation (45) to

dIν

dτν
= Iν − Bν(T ) . (47)

Suppose we have an emitting and absorbing gas medium confined within
a finite linear extent l0, and we consider the radiation coming from the
outside (l < 0, see Figure 25). The optical depth τν is chosen to be
equal to τν(0) at l = 0, and to 0 at l = l0.
The solutions to equation (47) are:

s
I  (s, l) I  (s, l + dl)ν ν

dl
ν ν

0 l

 τν  τν τν

l0

(    )l0 = 0

I  (0) I  (l  )ν ν

Background 
Radiation

 τνd

(0)

κ  

εν

= 0
= 0

ν

0

Medium with finite andκ ε

Figure 25: Radiative transfer in LTE and optical depth.

within the medium (0 ≤ l ≤ l0):

Iν(l) = Iν(0)eτν−τν(0) + eτν

τν(0)
∫

τν

Bν(T (τ ′))e−τ ′

dτ ′, (48)
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and outside the medium (l0 ≤ l):

Iν(l) = Iν(l0) = Iν(0)e−τν(0) +

τν(0)
∫

0

Bν(T (τ ′))e−τ ′

dτ ′ , (49)

where Iν(0) is the incoming background radiation.

5. LTE and isothermal medium
If the medium is isothermal (T (τ ′) = T = const), the solutions are:
within the medium (0 ≤ l ≤ l0):

Iν(l) = Iν(0)eτν−τν(0) + Bν(T )(1 − eτν−τν(0)), (50)

and outside the medium (l0 ≤ l):

Iν(l) = Iν(l0) = Iν(0)e−τν(0) + Bν(T )(1 − e−τν(0)) . (51)

Note that Iν → Bν(T ) when τν(0) → ∞ in the above equations. This
means that thermal radiation becomes blackbody radiation re-
flecting the temperature of the medium when, and only when,
the medium is completely opaque.

If we denote the intensity Iν in terms of the brightness temperature
TB, and adopt the Rayleigh–Jeans approximation for Bν(T ):

Iν =
2ν2

c2
kTB and Bν(T ) =

2ν2

c2
kT ,

the equation (51) for the solution of the radiative transfer equation
outside the medium can be described by

TB(l) = TB(0)e−τν(0) + T (1 − e−τν(0)) . (52)

10.4 What is LTE?

How can the Kirchoff law εν/κν = Bν(T ) be satisfied, even though the inten-
sity of the radiation is not blackbody?

The opacity and emissivity are expressed in terms of Einstein’s differential
coefficients, as we saw in equation (38)

κν = (nmβn
m − nnβm

n )
hν

c
,

εν = hνnnαm
n .
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Taking into account Einstein’s relations among the differential coefficients in
equations (21) and (25):

gmβn
m = gnβm

n ,

αm
n

βm
n

=
2hν3

c3
,

we can express the emissivity–opacity ratio as

εν

κν
=

1
nm

nn

gn

gm
− 1

2hν3

c2
, (53)

using equation (39). Obviously, the right hand side of equation (53) becomes
the Planck function if the Boltzmann distribution

Pn =
nn

n
= gne−

En
kT ,

(equation (17)) holds, and hence

nm

nn

gn

gm
= e

hν
kT .

Therefore, we can interpret LTE as a physical situation where the Boltzmann
distribution is established among the particles in a medium due, for example,
to their mutual collisions, but in which the radiation is still not in equilibrium
with the particles.

10.5 Spectrum of the Orion Nebula

Now we are in a position to interpret qualitatively the bend in the spectrum
of the Orion Nebula, as shown in Figures 2 and 26. If we neglect the contri-
bution of the background radiation in the solution of the radiative transfer
equation in the isothermal LTE case (equation (51)), the intensity is given
by

Iν = Bν(T )(1 − e−τν(0)).

Therefore, the bending can be explained if the nebula is completely opaque
(τν(0) � 1) at low frequencies, but not at high frequencies. In the higher
frequency range, the radiation no longer shows the blackbody spectrum. But
this type of radiation is still usually included in the category of thermal
radiation, since this is caused by the thermal motion of free electrons in
the plasma gas, and tends to have the blackbody (Planck) spectrum in the
completely opaque limit.
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Figure 26: Interpretation of the spectrum of the Orion Nebula. Left panel is
from Kraus (1986).

11 Synchrotron Radiation

Synchrotron radiation is a typical example of non-thermal radiation caused
by the high–speed (“relativistic”) electrons in their accelerated helical motion
in a magnetic field. Historically, synchrotron radiation was first discovered in
1948, as the light emitted by a particle accelerator called the “Synchrotron”.
Synchrotron radiation is dominant in a variety of astronomical objects, in-
cluding “Active Galactic Nuclei” (AGNs), Supernova Remnants (SNRs), and
solar flares (see Figure 27 as an example).

11.1 Non–Relativistic Case

In the non–relativistic case, the analog of synchrotron radiation is known as
“cyclotron” or “gyro–synchrotron” radiation. In this case, the balance of the
Lorentz force and the centrifugal force

e(v⊥ × B) =
m0v

2
⊥

r
,

gives rise to “Larmor Precession” with “gyro–frequency” νG:

νG =
v⊥
2πr

=
1

2π

eB

m0
,
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Figure 27: Many galaxies show activity in their nuclei, involving violent
ejections of high–energy electrons and resultant synchrotron radiation. A
nearby galaxy M87, also known as Virgo A or 3C 274 in radio astronomy, is an
example. Left: Infrared image of M87 by 2 Micron All Sky Survey (2MASS).
Right: Close–up view of a collimated jet by Hubble Space Telescope (HST).
(Figure courtesy of NASA/IPAC Extragalactic Database (NED) operated
by the Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration).

v
Centrifugal force
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T
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T

Figure 28: “Cyclotron” or “Gyro–synchrotron” radiation
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where m0, e and v are rest mass, electric charge and velocity of an electron,
while B is the magnetic flux density (Figure 28).

The gyro–frequency νG does not depend on the velocity of the electron.
Therefore, for any electron velocity, cyclotron radiation is emitted as a line at
frequency νG, which is modulated only by the spatial and temporal variation
of the magnetic field.

11.2 Relativistic Case

In the relativistic case, when the electron velocity v approaches light velocity
c, the radiation from an accelerated electron is emitted almost exclusively
in the direction of movement of the electron, due to the relativistic beaming
effect (Figure 29). A distant observer can detect this pulse–like radiation
only when the narrow beam is directed along or near the line of sight. Since
the beam direction rotates around the magnetic field at high speed, the
resulting high frequency pulses from a single electron produce a continuum–
like spectrum, with a peak frequency νmax:

νmax ∝
νG

1 − v2

c2

. (54)

The energy distribution of high–energy electrons in active regions, such
as AGNs and SNRs, usually follows a power law:

N(E) ∝ E−γ, (55)

where E is the energy of the electron, N(E) is the number density of elec-
trons with energy E per unit energy range, and γ is the index of the energy
spectrum. Since the energy of an electron with velocity v:

E = mc2 =
m0c

2

√

1 − v2

c2

, (56)

is proportional to the square root of its peak frequency νmax given in equation
(54) (i.e. E ∝ ν1/2

max), a large number of electrons in a wide range of energy
yield a compound spectrum with energy density Uν, which is roughly given
by

Uν ∝ ν
1−γ

2 . (57)

Since the index γ of the energy spectrum of high–energy electrons, as ob-
served in the cosmic rays, is roughly γ ' 2.4, we can expect that the spectrum
of the synchrotron radiation is approximately

Uν ∝ ν−0.7. (58)
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Figure 29: Synchrotron radiation from a relativistic electron.
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Therefore, the spectral index (Sν ∝ ν−α) is around α ' 0.7.
Thus, we can now explain the observed positive spectral indices of the

spectra of the non–thermal sources such as Crab Nebula, Cygnus A, 3C273,
the disturbed Sun, etc. (Figure 30).

Figure 30: Spectra of continuum radio sources, including non–thermal
sources with positive spectral indices (Kraus, 1986; left), and the Crab Neb-
ula supernova remnant, a typical synchrotron radiation source.
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