

中川亜紀治, 倉山智春, Gabor Orosz, VERAプロジェクト

- 1 Aim, Method of astrometric study of Miras and LPVs using VERA
- 2 Current results
 - Period-luminosity relation
 - Circumstellar kinematics
- 3 Future prospects of the Galactic LPV studies based on astrometry

Construction of PLR of the Galactic OH/IR stars (P>1000d)

Mira and other long period variables

- Mass $1 \sim 3$ Msun ($1 \sim 8$ Msun)
- C/O-core, He-shell, H-rich envelope O-rich, C-rich
- Period 100~1000 d, P>1000d
- Period-luminosity (MK) relation \rightarrow Distance indicator
- High mass loss ratio
 - \rightarrow Chemical enrichment of the universe
- Thick disk star
- Large velocity dispersion

A+	Cyan	RGB variables and metal-poor and old AGB variables
A-	Yellow	Less regularly pulsating AGB variables
В-	Orange	RGB variables and metal-poor and old AGB variables
B+	Green	Less regularly pulsating AGB variables
С'	Blue	Mira variables pulsating in the first-overtone mode
С	Red	Mira variables pulsating in the fundamental mode
D	Steel-blue	Some obscured variables and unknown variables
F	Magenta	Cepheid variables pulsating in the fundamental mode
G	Purple	Cepheid variables pulsating in the first-overtone mode

Cepheid variables pulsating in the first-overtone mode Purple

Masers in Miras

Long term monitoring of H2O masers (2003~)
Interval ~1 month

Results of Single-dish monitoring at VERA Iriki station.

Period-Luminosity Relation (PLR)

- Method:
 - (1) Distance measurements using annual parallax (VLBI astrometry)
 - (2) Convert apparent magnitudes(m_k) to absolute magnitudes(M_k)

Parallax measurements : Mira and SR

Latest results:

PLR of the Galactic LPVs based on astrometric VLBI

10 Galacti		on vebi methot	,	VENA				
Source	Type	Parallax	P	$\mathrm{Log}P$	m_K	M_K	Maser	Reference [†]
		[mas]	[day]		[mag]	[mag]		(Parallax, m_K)
RW Lep	SRa	1.62 ± 0.16	150	2.176	0.639	-8.31 ± 0.22	H_2O	kam14, a
S Crt	SRb	$2.33 {\pm} 0.13$	155	2.1	0.786	-7.38 ± 0.12	H_2O	nak08, a
RX Boo	SRb	$7.31 {\pm} 0.5$	162	2.2	-1.96	-7.64 ± 0.15	H_2O	kam12, b
R UMa	Mira	$1.97 {\pm} 0.05$	302	2.4	1.19	-7.34 ± 0.06	H_2O	
W Hya	SRa	10.18 ± 2.36	361	2.5	-3.16	-8.12 ± 0.51	OH	vle03, c
S CrB	Mira	$2.39 {\pm} 0.17$	360	2.5	0.21	-7.90 ± 0.15	OH	vle07, c
T Lep	Mira	$3.06 {\pm} 0.04$	368	2.566	0.12	-7.45 ± 0.03	H_2O	nak14, c
R Aqr	Mira	4.7 ± 0.8	390	2.591	-1.01	-7.65 ± 0.37	SiO	kam10, c
R Aqr	Mira	$4.59 {\pm} 0.24$	390	2.591	-1.01	-7.70 ± 0.11	SiO	min14, c
RR Aql	Mira	$1.58 {\pm} 0.40$	396	2.598	0.46	-8.55 ± 0.56	OH	vle07, c
U Her	Mira	$3.76 {\pm} 0.27$	406	2.609	-0.27	-7.39 ± 0.16	OH	vle07, c
SY Sel	Mira	$0.75 {\pm} 0.03$	411	2.614	2.55	-8.07 ± 0.09	H_2O	nyu11, b
R Cas	Mira	5.67 ± 1.95	430	2.633	-1.80	-8.03 ± 0.78	OH	vle03, c
U Lyn	Mira	$1.27 {\pm} 0.06$	434	2.637	1.533	-7.95 ± 0.10	H_2O	kam15, a
UX Cyg	Mira	$0.54{\pm}0.06$	565	2.752	1.40	-9.94 ± 0.24	H_2O	kur05, a
S Per	SRc	$0.413 {\pm} 0.017$	822	2.915	1.33	-10.59 ± 0.09	H_2O	asa10, b
PZ Cas	SRc	$0.356 {\pm} 0.026$	925	2.966	1.00	-11.24 ± 0.16	H_2O	kus13, b
VY CMa	SRc	$0.88 {\pm} 0.08$	956	2.980	-0.72	-11.00 ± 0.20	H_2O	cho08, b
NML Cyg		0.62 ± 0.047	1280	3.107	0.791	-10.25 ± 0.16	H_2O	zha12, a

Nakagawa et al. 2016

Maser distribution and Circumstellar kinematics

位置天文衛星データの活用

Kinematics of circumstellar matter based on proper motion

- Kinematics of circumstellar matter obtained with VLBI imaging based on pattern matching.
- High accuracy of proper motion of each maser spot
- Difference between NJ/GAIA and VERA indicate circumstellar (internal) motion of masers

Typical velocity of circumstellar maser 7 km/sec → Angular velocity mas/yr 3.0 mas/yr@ 500pc 1.5 mas/yr@ 1kpc 1.0 mas/yr@ 1.5kpc

Circumstellar motion derived from two independent astrometry, VERA and HIPPARCOS

- 準備的な研究: R UMa -

- No assumption of symmetry for distribution and kinematics of masers.
- Preliminary study using Hipparcos data. → R UMa の星周運動(Nakagawa et al. 2016)

Contribution to study of the Galactic kinematics

OH/IR stars can be expected to have larger mass. If we can establish PLR of OH/IR with P>1000 days, they can be a new disk tracer.

To determine distribution and motion of OH/IR stars, ... 1. Annual parallax measurement 2. Distance indicator

PLR of the Galactic OH/IR stars

OH/IR stars with P > 1000d

⇒ Absolute magnitudes of Galactic OH/IR stars with known distances

Engels et al. (2015) Phase lag method 17 OH maser source

OH/IR stars with P > 1000d

⇒ Absolute magnitudes of Galactic OH/IR stars with known distances

Engels et al. (2015) Phase lag method 17 OH maser source

Distribution of Mira and OH/IR (I,b) coordinate

- Mira \rightarrow Wide distribution
- $OH/IR \bullet \rightarrow Concentration to Galactic plane \rightarrow High Mass \rightarrow Disk tracer$

(I,b) distribution of MIRA and OH/IR on Galactic coordinate

OH/IR stars with P > 1000d

Yamashita (Thesis 2016)

LPVs with P > 1000 day

K-band monitoring with Kagoshima university 1m IR telescope.

OH/IR stars with P > 1000d

鹿大1m鏡でモニターしたLPV

• Period vs K-magnitude

Yamashita (Thesis 2016)

鹿大1m鏡でモニターしたLPV

• Period vs K-amplitude

Yamashita (Thesis 2016)

鹿大1m鏡でモニターしたLPV

• Period vs Color (H-K)

Yamashita (Thesis 2016)

SED of Mira and SR(S Crt)

SED of OH/IR star (OH138.0+7.2)

Flux [Jy]

今後の活動

- Galactic MiraのPLRの高精度化
 LMCとの金属量差異の効果
- Low-frequency Astrometry (1.6GHz)
 - OH/IR stars: OH maser astrometry (Gabor-san)
 - Single Dish (臼田64mの利用)
- Near-IR, Mid-IR のモニター観測
 - 鹿児島1m鏡
 - TAO 中間赤外モニター
- JASMINE(赤外領域)によるParallax計測

鹿児島1m鏡のメリット IR長期間モニター

